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Abstract—Large Language Models (LLMs) have revolu-
tionized natural language processing, but deploying them in
resource-constrained environments and privacy-sensitive do-
mains remains challenging. This paper introduces the Dis-
tributed Large Language Model (DisLLM), a novel distributed
learning framework that addresses privacy preservation and
computational efficiency issues in LLM fine-tuning and infer-
ence. DisLLM leverages the Splitfed Learning (SFL) approach,
combining Federated Learning (FL) and Split Learning (SL)
benefits for privacy-preserving and computationally efficient
LLM deployment. It splits the LLM into client-side and server-
side components, allowing sensitive data to remain on client
devices while distributing the computational load. An efficient
fine-tuning technique called Low-Rank Adaptation (LoRA)
is incorporated to reduce trainable parameters and memory
footprint. Additionally, Local Differential Privacy (LDP) is used
to add controlled noise to the sensitive data, further enhancing
privacy preservation. Experimental evaluations on various text
classification datasets demonstrate DisLLM’s effectiveness in
model accuracy, convergence rate, and computational efficiency.
Factors like the number of clients, cut layer position, and model
variants are thoroughly investigated. Results show that DisLLM
achieves comparable accuracy to centralized fine-tuning while
preserving data privacy and optimizing resource utilization.
Moreover, its ability to handle multiclass classification tasks
with many classes emphasizes its robustness and versatility.
Therefore, DisLLM represents a significant step forward in the
practical deployment of LLMs, ensuring efficiency and privacy
preservation.

Index Terms—LLMs, Finetuning, Distributed Learning Sys-
tem, Resource Constraint Environment, Splitfed, LoRA

I. INTRODUCTION

The surge of next-generation Artificial Intelligence (AI)
has been observed in recent years with the introduction
of LLMs. These complex AI models have revolutionized
how computers interact with language, enabling them to
understand the nuances of human language through extensive
training on vast amounts of real-world text [1]–[3]. They
excel in text generation, translation, summarisation, and
question-answering tasks and can even comprehend images
and text in files [4], [5]. A wide adoption of these models
across many sectors can be observed, which also has enabled
further research and development into LLMs.

Since the full capabilities of LLMs are yet to be dis-
covered, there is an unforeseen challenge in terms of the
security and privacy of utilizing these models in real-world

applications. LLMs require a massive amount of data to
be trained, and to make these models more practical for
performing highly specific intelligent tasks, fine-tuning on
domain-specific data is often necessary. However, this fine-
tuning process is often outsourced to third-party service
providers or cloud platforms due to the need for significant
computational resources. This outsourcing raises concerns
about privacy and security, as the data used for fine-tuning
may include private and sensitive information, which could
be exposed or mishandled during the process.

For example, an organization which owns sensitive in-
formation such as medical records or financial information
may face difficulty in performing LLM-based fine-tuning by
sending it to third parties. Transfer learning offers a potential
solution to these challenges by leveraging knowledge from
pre-trained models to enhance performance on specific tasks
with limited data. This approach enables LLMs to adapt
efficiently to specialized domains, requiring fewer data and
computational resources than training from scratch. Despite
the benefits of transfer learning, typical LLMs cannot be
trained on client devices since they are massive models with
billions of parameters that require immense computational
demands during fine-tuning and inferencing. Therefore, a
full deployment of LLMs on devices like mobile phones
or laptops is particularly challenging due to their limited
computational power and storage capacity.

Therefore, we introduce the DisLLM approach to address
these issues via privacy-preserved distributed LLM training.
Our DisLLM leverages the SFL approach [6] and is primarily
designed for LLMs. This innovative approach introduces
several novel contributions that enhance the utility and ap-
plicability of LLMs across various domains like healthcare
and finance. DisLLM can fine-tune an LLM on sensitive
data in a privacy-preserving manner while addressing the
problem of computational demand. Therefore, both privacy
and computational efficiency are enhanced. Ensuring that
sensitive raw data remains on the client device minimizes
the risk of privacy breaches.

Additionally, it optimizes the distribution of computational
tasks between the client-side and server-side components,
allowing each part of the system to operate within its capacity



and enhancing the overall efficiency and performance of the
model. DisLLM-based models can fine-tuned dynamically for
highly specific, customizable contexts, such as personal dig-
ital assistants or sensitive medical data analysis. This can be
done without the need for sending user data to untrustworthy
third parties, and facilitating low-end computing devices to
join the training process with limited computational require-
ments. This adaptability ensures that DisLLM can meet the
diverse needs of modern AI applications, making it a valuable
advancement in the field of Machine Learning (ML).

A. Our Contributions

We provide our key contributions in the paper as follows:
• Novel approach: To the best of our knowledge, this is

the first attempt at splitting LLM in a FL environment,
combining the benefits of both SL and FL techniques.

• Efficient resource utilization: Our approach allows for
efficient resource utilization on end devices by dis-
tributing the computational load across end devices and
servers while providing privacy preservation for training
data.

• Model splitting architecture: We introduce a novel archi-
tecture that efficiently splits the LLM from a specified
cut layer, enabling effective model distribution across
multiple devices.

• Comprehensive experimental evaluation: We conduct
extensive experiments to validate our proposed ap-
proach’s performance, efficiency, and privacy-preserving
capabilities in various scenarios.

These contributions highlight the novelty and significance
of our work in advancing the field of LLM training and
deployment in resource-constrained and privacy-sensitive en-
vironments.

The rest of the paper is organized as follows: Section II
provides background information. Section III reviews related
works associated with our work. Section IV details the
system model of DisLLM. Section V describes the process of
DisLLM. Section VI presents experimental results. Section
VII concludes the paper and discusses future work.

II. BACKGROUND

This section outlines the background preliminaries that
provides an overview of the proposed approach is based on.

A. Fine-tuning of LLM-based Models

The introduction of Generative Pre-trained Transformers
(GPT) revolutionized the AI landscape by utilizing unsuper-
vised learning and vast datasets. These GPT models show-
cased remarkable abilities in understanding and generating
natural language, leading to improved performance in various
language-related tasks. The GPT-2, introduced by Radford et
al. [3], is a large unsupervised language model that uses trans-
formers as its core architecture. This model has been trained
on a diverse dataset of 8 million web pages, known as the
WebText dataset, and consists of 1.5 billion parameters. The
training objective of GPT-2 is straightforward yet powerful:

predict the next word given all the previous words within a
text. Therefore, GPT-2 has been used as the base model in
our paper.

Despite their potential, LLMs face significant challenges in
fine-tuning, primarily due to computational costs and privacy
concerns. Their immense size makes it difficult for resource-
constrained users to fine-tune them locally. To address this is-
sue, a parameter-efficient fine-tuning technique called LoRA
[7] has been incorporated to reduce the number of trainable
parameters during the fine-tuning process. Moreover, fine-
tuning these models often requires the client’s sensitive
data, which must be transmitted to remote servers, risking
data exposure and privacy leakages. These issues present
significant drawbacks that need to be addressed to enable
privacy-assured fine-tuning of LLMs.

B. Distributed ML

Therefore, Distributed ML techniques such as FL [8], SL
[9], and SFL [6] have emerged as potential solutions to
address privacy preservation and computational load distri-
bution in model training. These approaches aim to enable
collaborative learning while keeping sensitive data localized,
thus mitigating privacy risks associated with centralized
data collection and processing. Additionally, the privacy-
preserving framework LDP [10] has been used to address
issues related to data reconstruction by malicious devices
in distributed learning scenarios. These methods collectively
enhance the security and privacy of distributed learning
systems.

III. RELATED WORKS

In this section, we provide further details of the current
state-of-the art related works on the LLM fine-tuning, dif-
ferent distributed ML approaches and privacy preservation
techniques used in ML.

1) Parameter-Efficient Fine-Tuning: Hu et al. [7] intro-
duced LoRA, a parameter-efficient fine-tuning technique that
significantly reduces the number of trainable parameters
in LLMs. LoRA introduces trainable low-rank matrices to
specific weights within the Transformer architecture, partic-
ularly focusing on the attention mechanism’s query and value
projection matrices. This approach allows for fine-tuning a
small number of additional weights while keeping most of the
pre-trained network parameters frozen. Howard and Ruder
[11] demonstrated that LoRA reduces parameter overhead
and supports efficient task-switching while maintaining the
same inference latency as a fully fine-tuned model.

2) Federated Learning: According to McMahan et al.
[12], FL involves training ML models concurrently on local
devices using private data [8], [13] for a predetermined
number of local epochs. It allows for parallel processing
across many clients, which enhances the efficiency of model
training. Subsequently, these local updates are relayed to a
central server for aggregation to form a global model. The
parameters of this global model are then distributed back
to all clients for further training in the subsequent round.



This iterative process continues until the algorithm reaches
a point of convergence. FL’s main advantage is its ability to
train models without sharing raw data, thus preserving user
privacy.

3) Split Learning: In a different approach, Vepakomma et
al. [9] proposed SL, which splits a deep learning network
mainly into two parts: one for the client side and another for
the server side, each processed and computed on different
devices [14]. The clients, which hold the private data, are in
charge of the client-side part of the network, while the server
manages the server-side part. During forward propagation,
communication between these parts involves transmitting
activations, known as smashed data, from the client-side
network’s split layer, also called the cut layer, to the server
side. During backward propagation, the server-side network’s
split layer provides the smashed data’s gradients to the client.
Hence, the complete model will be trained collaboratively.
Furthermore, the learning process synchronizes among mul-
tiple clients through centralized or peer-to-peer mode. SL
offers better model privacy than FL because the raw data does
not leave the client’s device. However, SL has a drawback
in that it can cause clients’ resources to be idle and increase
training overhead with many clients due to its relay-based
training approach.

4) Splitfed Learning: Thapa et al. [6] introduced SFL,
which combines both FL and SL to eliminate their inherent
drawbacks and enhance data privacy and model robustness
while retaining the advantages of both methods [15]. SFL
provides test accuracy and communication efficiency similar
to SL but with significantly decreased computation time per
global epoch for multiple clients. It also improves communi-
cation efficiency over FL as the number of clients increases.
SFL is beneficial in resource-constrained environments where
full model training is not feasible and fast model training is
required. However, it is important to note that SFL is not
currently implemented on LLMs. Existing SFL techniques
are primarily focused on conventional deep learning models
with limited parameters, and they are not applicable to the
more complex and parameter-heavy LLMs.

5) Privacy-Preserving Techniques: Differential Privacy
(DP), introduced by Abadi et al. [10], provides privacy by
adding controlled noise to sensitive data, hence the individual
data points cannot be distinguishable within aggregated out-
puts. LDP is a variant of DP that applies noise directly into
individual records before data leaves the client’s device in
a distributed learning system, ensuring even the server-side
can’t access raw data. LDP calibrates noise based on the
privacy budget (ϵ) and function sensitivity (S). The privacy
budget (ϵ) balances privacy and accuracy, where a smaller
ϵ provides stronger privacy but results in lower accuracy,
while a larger ϵ allows for greater accuracy at the expense of
reduced privacy, and (S) determines the amount of noise that
must be added to protect privacy. These approaches ensure
data security and regulatory compliance [16] by making
outputs insensitive to individual records, thus preserving

privacy while fine-tuning a distributed model.
Our work, DisLLM, builds upon these existing techniques

by combining the benefits of SFL, LoRA, and LDP to
create a novel distributed learning framework for privacy-
preserving and computationally efficient fine-tuning of LLMs
in resource-constrained environments. Table I provides a
further comparison of our approach with the existing related
works.

TABLE I: Summary contribution of our work.

Characteristics FL [12] SL [9] SFL [6] Ours
LLM-based fine-tuning - - - ✓
Efficient model splitting - ✓ ✓ ✓
Model aggregation ✓ - ✓ ✓
Parameter-efficient fine-tuning - - - ✓
Use of multiple clients ✓ ✓ ✓ ✓
Parallel client-side training ✓ - ✓ ✓
Raw data remains private ✓ ✓ ✓ ✓

IV. SYSTEM MODEL

The DisLLM describes how a distributed architecture
collaboratively fine-tunes an LLM using multiple clients, a
main server, and a Fed Server. The core concept involves
splitting the LLM into two parts: one for client-side tasks and
another for server-side processing. This division optimizes
computational resources while safeguarding user data.

Fig. 1: System model of DisLLM architecture

In this architecture, clients play an active role in both pre-
processing tasks and fine-tuning their respective client-side
model portions on resource-constrained devices. The output
of the client-side model, referred to as smashed data, is sent
to the main server. Meanwhile, the server efficiently manages
the receipt of smashed data from clients and facilitates the
fine-tuning process using its available higher computational
resources.

Fed Server is responsible for averaging the client-side
models and creating the global client-side model. After each
epoch, the updated local client-side models from all clients
are sent to the Fed Server. The Fed Server then computes the



average of these models to form the global client-side model,
which is subsequently distributed back to all clients for the
next epoch of training.

The communication between clients, the main server, and
the Fed Server is crucial. Clients transmit processed data,
known as smashed data, to the main server. The main
server processes this data and provides gradients of the
smashed data for backpropagation. The Fed Server averages
the updated client-side models to create the global client-side
model.

The architecture diagram in Figure 1 illustrates this sys-
tem’s structure and data flow. We have considered a system of
12 clients and a main server. It clarifies the roles of clients,
the main server, and the Fed Server, emphasizing the split
model approach and the exchange of data between them.
The diagram also highlights how the Fed Server integrates
into the architecture to ensure efficient model averaging and
distribution.

V. THE DISTRIBUTED LLM PROCESS

Fig. 2: The DisLLM process overview

The DisLLM process begins by taking an LLM and
assigning pre-trained weights provided by the manufacturers
of the LLM. Figure 2 shows a visual representation of the
DisLLM architecture and process flow, with numbered steps
corresponding to the process described below. To optimize
the computational resources required for fine-tuning, step 1
applies LoRA, a parameter-efficient fine-tuning method. This
approach reduces the number of trainable parameters.

In step 2, the LLM is split into two parts: one for the client
side and one for the server side. This split is performed with
careful consideration of the computational resources available
on the client devices, ensuring that the client-side model
remains lightweight enough to run on resource-constrained
devices. As step 3, the client-side model is sent to the
FedServer, where it is referred to as the global client-side
model, while the server-side model is sent to the main server.
Step 4 involves the FedServer, then distributes the global
client-side model to every client. Within each client, the LLM
model portion is called the local client-side model, allowing
the distributed fine-tuning process to begin efficiently without
compromising performance or privacy.

Clients preprocess their local datasets, performing essen-
tial tasks such as tokenization and padding. For text data
preparation, the tiktoken tokenizer [3] is used to convert
raw text into token IDs, with a maximum length limit to
truncate excessively long sequences. Padding is applied to
handle varying text lengths and ensure uniform input size,
which standardizes the data and maintains consistent batch
dimensions across the dataset. Following the preprocessing,
step 5 involves clients conducting a forward pass through the
client-side model. To ensure the protection of sensitive client
data and prevent any attempt to reconstruct it from the output
of the client-side model, we apply LDP by adding Laplacian
noise to the embeddings after the positional embedding layer,
where the token embedding layer converts discrete input to-
kens into dense vector representations, capturing the semantic
information essential for meaningful text processing. Adding
noise before this conversion could undermine the model’s
ability to accurately capture semantic relationships. There-
fore, the noise is introduced after the positional embeddings
to maintain the integrity of the token representations while
enhancing privacy.

First, we can calculate the scale parameter b of the Laplace
distribution based on the sensitivity S and privacy budget ϵ,
as shown in Equation 1:

b =
S

ϵ
(1)

Then, Laplacian noise L(0, b) can be added to the embed-
dings to ensure DP, as shown in Equation 2:

enoisy = e+ L(0, b) (2)

Here, e represents the original output of embedding and
L(0, b) denotes the Laplace distribution with mean 0 and
scale b.

Equations 1 and 2 illustrate the calculation of the scale
parameter and the addition of Laplacian noise, respectively.

In step 6, the output from the final layer of the client-side
model, known as smashed data, is sent to the main server,
completing the forward pass at the client level. Step 7 begins
as the main server receives smashed data from clients, and
the server processes these data. For each client’s smashed
data, the server performs a forward pass through the server-
side model, obtaining the predictions. These predictions are
then sent back to the respective clients.



Algorithm 1 DisLLM Fine-Tuning

Notations: St is a set of K clients at time instance t; Dk,t

is the smashed data of client k at time t; Yk and Ŷ k are the
true and predicted labels of client k; ∇ℓk is the gradient of
the loss for client k; WC and WS are the client-side and
server-side LLM model parts; ∆Dk,t gradients of smashed
data; (7) ek,t and enoisyk,t are the outputs of the positional
embedding layer (Pk,t) before and after adding noise.
Execution on FedServer:
if t = 0 then

Initialize global WC
t

Send WC
t to all K clients

else
Receive WC

t+1 from all K clients
Update the global WC

t+1 ← 1
k

∑K
k=1 W

C
k,t

Send updated global WC
t+1 to all K clients

end if
Execution on Clients:
if t = 0 then

Receive initial WC
k,t

else
for each client k ∈ St in parallel do

Forward pass until Pk,t: WC
k,t → ek,t

Add noise ek,t +Noise→ enoisyk,t

Forward pass: enoisyk,t → Dk,t

Send Dk,t to main server
Receive Ŷ k from main server
Calculate loss: L(Y k, Ŷ k)
Sending loss to the main server
Receive ∆Dk,t from main server
WC

k,t ← Client Backpropagate (∆Dk,t)
Send updated WC

k,t to FedServer
end for

end if
Execution on Main Server:
for each client k in St in parallel do

Receive Dk,t

Forward pass: WS
k,t → Ŷk

Send Ŷk to client
Receive loss
Backpropagate: Compute ∇ℓk(WS

t ;DS
t )

Send ∆Dk,t to client
Update server-side model:
WS

t+1 ←WS
t − η∇ℓk(WS

t )
end for

Using the labels and the predictions received from the main
server, each client calculates the loss and sends it back to
the main server. The server then performs backpropagation
on the server-side model, updating its parameters based
on the gradients of the server-side model parameters with
respect to the loss. The server also calculates the gradients
of the smashed data with respect to the loss and sends these

gradients back to the clients as step 8. The clients use these
gradients to perform backpropagation and update their local
model parameters, ensuring synchronized updates across the
system.

As step 9, after each epoch, the updated client-side models
are sent to the Fed Server. Once all the client updates are
received, the Fed Server performs model averaging to create
a new global client-side model. This updated global client-
side model is then sent to all clients, and the next epoch
begins. This process is repeated for every epoch, resulting in
a well-tuned client-side model. We summarize the DisLLM
process in Algorithm 1.

The DisLLM architecture prioritizes client privacy through
a multi-layered approach. At its core, DisLLM implements
“privacy-by-design,” ensuring raw input data never leaves
the client’s device. This distributed approach localizes data
processing to each client’s environment, mitigating risks of
unauthorized access or data breaches. Additionally, DisLLM
applies Laplacian noise to the data before transmission,
providing an extra layer of security against potential recon-
struction attempts. The server only handles “smashed data”
or privacy-protected intermediate outputs. This combination
of localized processing, noise injection, and sharing only pro-
cessed outputs ensures robust protection of sensitive informa-
tion throughout the fine-tuning process. By keeping raw data
local and adding noise to processed data, DisLLM maintains
data confidentiality even in privacy-critical applications.

VI. EXPERIMENTAL RESULTS

This section provides information on the experiments per-
formed on the DisLLM and highlights the key observations
from the obtained results.

A. Experimental Setup and Dataset Information

In our DisLLM implementation, we conducted experi-
ments simulating a system of 10 clients and a server, with
some experiments utilizing up to 12 clients, to imitate a small
to medium-sized real-world distributed learning scenario.
This setup allowed us to validate DisLLM’s functionality
and performance, particularly for fine-tuning a substantial
model like GPT-2. The experiments were developed using
PyTorch in the Google Colab environment, utilizing 15GB T4
Graphical Processing Unit (GPU) and 12GB Random Access
Memory (RAM), which enabled us to simulate both clients
and servers within the same environment. Datasets were
distributed across multiple clients to represent an accurately
distributed learning setup.

In the experiments, we used GPT-2 small with 124 million
parameters and GPT-2 medium with 355 million parameters.
The GPT-2 small model has 12 transformer blocks, while
the medium model has 24. Both client-side and server-
side models were trained with a learning rate of 1e-5 to
ensure stable convergence and optimal performance across
all experiments.

We used four text classification datasets, specifically se-
lected for their relevance to privacy protection. The datasets



are detailed in Table II. The Phone Dialogue Dataset [17]
is a comprehensive collection of simulated telephonic con-
versations, categorized into eight distinct classes: delivery,
social security number (SSN), support, reward, wrong, tele-
marketing, refund, and insurance. Similarly, the “Perverted
and Normal Chats” dataset [18] is a collection of short text
conversations labelled as either “0” for normal chats or “1”
for perverted or inappropriate chats. This dataset comprises
various chat messages, ranging from casual conversations
about daily activities to more explicit or suggestive content.
Furthermore, we utilized the DBpedia Classes dataset [19]
as a text classification dataset containing 70 and 219 classes.
The data comes from the DBpedia project, which extracts
structured information from Wikipedia articles. Lastly, we
incorporated the SMS Spam Collection dataset [20], a public
dataset of SMS messages that have been labelled as either
“spam” or “ham” (legitimate). It was compiled for mobile
phone spam research and contains SMS messages in English.

B. Effect of the Number of Clients on Model Accuracy
Convergence

As the initial experiment, we investigate the impact of
the number of clients on model accuracy in a DisLLM
setup, considering four scenarios: 4, 6, 8 and 12 clients. As
illustrated in Figure 3, all client setups initially demonstrated
very close testing accuracy. However, as the number of
epochs increases, the setup with the fewest clients (4 clients)
demonstrates the highest rate of accuracy improvement. The
setups with 6 and 8 clients exhibit a more gradual accuracy
improvement, and the 12-client setup demonstrates the slow-
est and most steady improvement over the epochs. With fewer
clients, accuracy tends to increase rapidly at first but slows
down as the number of epochs progresses. In contrast, more
clients result in a more consistent and steady improvement.

Fig. 3: DisLLM testing accuracy variation across varying
epochs for different numbers of clients

This behavior can be attributed to the data distribution
among clients. With fewer clients, each client receives a
larger portion of the total dataset, allowing for more com-
prehensive learning from a broader data subset in each
epoch. This leads to quicker convergence as each client can
contribute more meaningful updates to the global client-side

model. Conversely, as the number of clients increases, the
amount of data per client decreases. This results in each
client having a smaller, potentially less representative sample
of the total dataset. Consequently, more epochs are required
for the global client-side model to effectively learn from the
entire dataset, as each client’s contribution in a single epoch
is based on a smaller data subset. Despite these variations, all
configurations eventually converge to similar accuracy levels
by the end of 12 global epochs, demonstrating the DisLLM
framework’s effectiveness across different client distributions.

C. Performance of finetuning centralized and DisLLM

In this experiment, we compare the accuracy of the
DisLLM model with the traditional centralized fine-tuning
scenario. In the centralized setup, the entire model is fine-
tuned on a remote server with access to all the sensitive
client-side data. In contrast, the DisLLM model divides the
fine-tuning process between a client and a central server,
making the sensitive data inaccessible at remote servers.

For this, we employed ten clients to participate in the fine-
tuning process, spanning 20 global epochs with a batch size
of 32 samples. Referring to Figure 3, it is observed that the
centralized setup reaches the optimal accuracy within fewer
epochs than the DisLLM setups with varying clients. How-
ever, after several epochs, all the DisLLM setups with varying
clients achieve the same optimal accuracy as the centralized
setup. Thus, the final accuracies are similar regardless of the
centralized or DisLLM approach. Although the centralized
approach achieves optimal accuracy in fewer epochs, it does
not provide privacy for sensitive client-side data. In contrast,
DisLLM offers complete privacy for sensitive client-side
data.

When the DisLLM setup was implemented in physically
separated systems, a communication delay time will be
introduced into the complete system. which has not been
considered in our research experiments. Specifically, our
simulations were conducted in the Google Colab environ-
ment, where there is no communication overhead in the
virtual simulations. Additionally, in real implementations, the
communication delay time in DisLLM is significantly lesser
than in traditional FL systems, as DisLLM transmits only the
cut layer activations through communication channels, rather
than sending complete model parameters like in FL systems.
However, the centralized system requires no communication
time as the complete model resides in one server. This
communication time arises due to the distributed nature of
the DisLLM architecture, wherein data exchanges between
clients and the central server require additional network
latency.

Therefore, the choice between a centralized or DisLLM
approach depends on the priority assigned to privacy versus
convergence speed. DisLLM provides enhanced privacy but
requires more epochs to reach optimal accuracy. Hence, it is
more suitable for privacy-crucial applications.



D. GPU consumption for finetuning of split-fed and DisLLM

Here, we compare the GPU usage of the DisLLM setup
with the split-fed setup for different numbers of clients. Both
models divide the fine-tuning process between a client and
a central server, making the sensitive data inaccessible to
remote servers. The GPU consumption reported in this ex-
periment represents the total GPU usage for the entire setup,
including both the server and all participating clients. We
conducted experiments with 1, 5, and 10 clients participating
in the fine-tuning process, spanning 20 global epochs with a
batch size of 32 samples.

Fig. 4: Comparison of GPU Usage between Split-fed [6] and
DisLLM methods across different numbers of clients

The results from the histogram in Figure 4 show that
DisLLM consistently demonstrates more efficient GPU usage
than the Split-fed model across varying client numbers. As
the number of clients increases to 1, 5, and 10, the additional
GPU requirement needed for split-fed compared to DisLLM
increases to 0.7 GB, 1.5 GB, and 2.5 GB, respectively. In
percentage terms, DisLLM achieves approximately 10.1%
lower GPU memory usage for 1 client, 15.8% lower for 5
clients, and 19.8% lower for 10 clients compared to the split-
fed model. Therefore, the DisLLM architecture demonstrates
an increasing reduction in GPU usage compared to the split-
fed model as the number of clients grows, and this will be
particularly noticeable as the number of clients increases,
consistently requiring less GPU memory than the split-fed
model. This efficiency gain can be attributed to DisLLM’s
incorporation of LoRA, which reduces the number of train-
able parameters.

These findings indicate that the DisLLM architecture offers
more advantages in GPU resource utilization, especially
in scenarios involving multiple clients, and is crucial for
optimizing resource allocation and performance in distributed
systems, where efficient GPU usage significantly impacts
overall system performance and cost-effectiveness.

E. Impact of Cut Layer Position on Model Performance

As the next experiment, we investigated the impact of the
cut layer’s position on model accuracy within the DisLLM
architecture. We have utilized the GPT-2 model, which has

12 transformer blocks, for our experiment. The cut layer’s
position determines the layer from which the model is
divided between the client and the server, and this position
significantly impacts the efficiency of the training process.
Therefore, we have conducted a series of experiments by
varying the cut layer position and evaluating the model’s
accuracy after each fine-tuning epoch.

Fig. 5: DisLLM testing accuracy variation across varying
epochs for different cut layer positions

The experiments were started by assigning the initial part
of the model with the first transformer block to the client
side and the remaining blocks to the server side. This allowed
us to analyze how the split position affects the overall fine-
tuning process. As we shift the cut layer deeper into the
model, from cut layer 1 to 6, the client-side model complexity
increases from 8.33% to 50% of the total model, while the
server-side model complexity decreases from 91.67% to 50%.
However, the majority of the model always resided on the
server side in all configurations.

Our results, illustrated in Figure 5, showed that the model’s
accuracy was initially low across all cut layer positions
and gradually improved as training progressed by complet-
ing more epochs. Whereas shallower-cut layers experience
quicker accuracy increments than deeper-cut layers. Eventu-
ally, all cut layer setups converged to the same accuracy level,
while deeper cut layers required more epochs to converge
than shallower cut layers. This observation suggests that with
deeper cut layers, clients have more layers to update inde-
pendently before averaging. This can lead to more diverse
updates across clients, especially in the early epochs. When
these diverse updates are averaged, it may take more epochs
for the global client-side model to converge to an optimal
state that balances the contributions from all clients.

Therefore, this highlights the trade-off between the distri-
bution of computational workload and the number of epochs
needed to achieve optimal accuracy when choosing the cut
layer position.

F. Impact of Number of Label Classes on DisLLM Accuracy

To evaluate the effectiveness and accuracy of our proposed
DisLLM-based LLM architecture for solving multiclass prob-
lems, we conducted a series of experiments using several
datasets with varying numbers of label classes. The primary



objective was to highlight the significance of having LLMs
architectures compared to conventional ML architectures like
LSTM or GRU and how the accuracy behaves with datasets
with different classes. The DisLLM model was trained for
each dataset using the same hyperparameters and training
procedure for 10 clients.

Dataset No. of classes Model Accuracies (%)
GRU LSTM LLM

Perverted and normal 2 83.42 84.18 96.97
Spam and ham 2 97.97 98.68 96.23

Phone Dialogue Dataset 8 82.81 85.42 97.39
DBPedia 70 77.57 78.31 86.50
DBPedia 219 63.87 65.48 89.38

TABLE II: Testing Accuracies Across Various Datasets for
Different Models

The results, shown in Table 1, demonstrate that the Dis-
LLM architecture achieves relatively high accuracy across
most of the tested datasets. However, there is a notice-
able trend of overall accuracy decreasing as the number
of classes in the dataset increases across all model types.
The LLM obtains a significantly high accuracy of over 96%
for the binary classification tasks, but the accuracy is lower
at 89.38% for the 219-class dataset (DBPedia 219 classes
dataset). This behaviour depicts that classification becomes
more challenging as the number of possible classes grows,
even with the use of LLM.

However, the DisLLM architecture demonstrates compar-
atively much better accuracy for datasets with many classes,
maintaining accuracy above 89% on a 219-class problem rel-
ative to other models with only limited to 65%, highlighting
its robustness and capacity to handle complex classification
tasks better.

G. Effect of GPT-2 Variants on Accuracy and Convergence
Rate

This study examined the accuracy of two GPT-2 models
with distinct parameter counts: 124 million and 324 mil-
lion. Incorporating LoRA adapters significantly decreases
the number of trainable parameters to 1.3 million for the
124 million parameter model and 3.5 million for the 324
million parameter model. This adjustment aims to streamline
the training process while maintaining the models’ robust
capabilities.

As illustrated in Figure 6, the model with more parameters
initially shows lower accuracy after the first training epoch.
However, as training progresses, the larger model’s accuracy
improves largely per epoch than the smaller model. After
each subsequent epoch, the higher-parameter model con-
sistently achieves better accuracy than the lower-parameter
model. This indicates that the model with more parame-
ters converges to its optimal performance level with fewer
epochs as the training progresses. The medium and small
models reached their convergence points after the 6th and 8th
epochs, respectively, beyond which further training yielded
no additional improvements in accuracy. Hence, the two

Fig. 6: DisLLM testing accuracy variation across varying
epochs for different GPT-2 variants
models attain and maintain their maximum accuracy for the
remaining epochs.

These findings can be explained primarily by two factors.
Firstly, the larger model’s initial lower accuracy likely re-
sults from its increased complexity, requiring more initial
training to effectively organize its larger parameter space.
This explains the slower start for the larger model. Secondly,
the larger model’s capacity to capture more complex patterns
enables it to reach optimal performance faster, needing fewer
epochs to converge.

H. Effect of Local Differential Privacy on Testing Accuracy

In this experiment, we analyzed the impact of LDP using
different levels of privacy budgets (ϵ) for the testing accuracy
of our model. The experiments were conducted under a setup
similar to previous experiments with 10 clients, where noise
was added to the embeddings to ensure privacy. The graph
presents the testing accuracy recorded for experiments with
different values of ϵ, specifically 2.0, 3.0, 3.5, 4.0, 4.5, 5.0,
and without noise.

Fig. 7: DisLLM testing accuracy variation across varying
epochs for different privacy budget values (ϵ)

From the graph in Figure 7, it is evident that with (ϵ =
5.0), the model achieves the highest accuracy, reaching close
to 90% by the end of the training epochs. As the privacy
budget decreases, the accuracy also decreases, with (ϵ = 2.0)
resulting in significantly lower accuracy, ranging around 20%
for most of the training period. Moderate privacy budgets



(ϵ = 3.5 to ϵ = 4.5) show a balanced trade-off, maintaining
reasonable accuracy levels between 50% to 70%. Therefore,
higher privacy budgets (ϵ = 5.0) result in better accuracy,
while lower privacy budgets (ϵ = 2.0) degrade the model’s
performance due to the added noise.

These results demonstrate that stronger privacy (lower ϵ)
ensures better protection against data reconstruction, and
it also introduces more noise, which can adversely affect
the model’s learning ability and performance. Conversely,
a higher privacy budget (higher ϵ) provides less noise in-
terference, allowing the model to achieve higher accuracy
but with weaker privacy guarantees. Therefore, selecting
an appropriate privacy budget is crucial in balancing the
trade-off between privacy and accuracy. Depending on the
application and the required privacy levels, this balance can
be adjusted to achieve optimal performance while ensuring
the necessary privacy protection for the users’ data.

VII. CONCLUSION AND FUTURE WORKS

In this research, we introduced DisLLM, a novel dis-
tributed learning framework that addresses the challenges
of privacy preservation and computational efficiency in fine-
tuning LLMs within resource-constrained environments. Dis-
LLM provides a robust solution for fine-tuning any LLM
model by innovatively combining the benefits of SL and
FL with LoRA and incorporating LDP. Hence, DisLLM
efficiently utilizes computational resources while maintaining
the privacy of sensitive data.

Our experiments show that DisLLM performs similarly
to traditional centralized models in terms of accuracy and
efficiency while providing enhanced privacy protection. The
inherent distributed architecture of DisLLM itself provides
privacy, which is enhanced by applying LDP, adding further
protection against potential privacy breaches. The DisLLM’s
adaptability across various scenarios and datasets highlights
its potential for real-world applications where data privacy
and resource limitations are prevalent concerns. Moreover,
the versatility of DisLLM is further emphasized by its
applicability to different domains, such as healthcare and
finance, where privacy concerns are paramount. This adapt-
ability, combined with enhanced privacy features and reduced
computational demand, positions DisLLM as a valuable
advancement in using distributed LLMs.

Future Works: Several areas can be explored further to
enhance the DisLLM framework’s capabilities.
• Dynamic resource allocation: Develop methods for dy-

namically adjusting the split between client and server
based on available resources and privacy requirements.

• Adaptive privacy mechanisms: Investigate advanced
techniques for dynamically adjusting privacy noise in
DisLLM based on data sensitivity or the specific re-
quirements of the clients.

• Communication efficiency: Improve data transfer mecha-
nisms, focusing on optimizing transmission of large data
tensors between clients and server in DisLLM. Explore
compression techniques and adaptive protocols to reduce
latency.

• Privacy-preserving AI applications: Explore the inte-
gration of DisLLM into various privacy-sensitive ap-
plications that require real-time inference like Voice
Assistants, leveraging the framework’s ability to keep
sensitive user data securely on client devices.
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