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Abstract—The convergence of blockchain and Internet of Things
(IoT) has become increasingly prevalent recently, as it addresses
challenges such as single point of failure and security concerns
associated with IoT. Blockchain offers immutable data storage,
availability, and transparency, but a significant drawback lies
in its inability to verify the truthfulness of the data stored on
it. State-of-the-art systems attempting to mitigate this concern
often rely on conventional reputation-based approaches, which
predominantly evaluate historical data from sensors and neglect
the critical assessment of data in real-time. Furthermore, there is
limited research on incorporating machine learning (ML) methods
to enhance data trustworthiness in blockchain systems. This paper
proposes a novel ML-based trust assessment approach that takes
into account both historical reputation and real-time data trust-
worthiness. Our approach integrates multiple ML models within a
blockchain framework using edge servers and validators, effectively
functioning as a distributed ensemble to enhance classification
accuracy, and contributing to more accurate reputation score
calculations. Our results demonstrate significant accuracy gains
in distinguishing trustworthy and untrustworthy IoT sensor data
in blockchain networks.

Index Terms—Blockchain, IoT, Smart Contracts, Machine
Learning, Data Trust

I. INTRODUCTION

Blockchain technology is increasingly being integrated into
a diverse range of systems, with the Internet of Things (IoT)
emerging as a key domain where its application is particularly
significant. As IoT continues to expand, becoming a vital part
of modern life and various industries, the vast network of inter-
connected devices it supports generates and exchanges massive
amounts of data. Ensuring the security and trustworthiness of
this data is crucial. Blockchain has emerged as a powerful al-
ternative to traditional centralized cloud infrastructures, offering
promising solutions for establishing trust in IoT applications. It
has the potential to address key architectural challenges in IoT,
particularly those related to centralization, data integrity, and
availability. However, a critical challenge arises in ensuring the
reliability of the data incorporated into the blockchain. While
blockchain provides a secure and tamper-resistant environment,
it does not guarantee that the data it stores is accurate or true
(Fig. 1). This inherent gap gives rise to the pervasive issue
known as the bad data problem in blockchain networks. This
highlights the need for reliable IoT data trust evaluation in
blockchain networks.

Recent research on IoT data trust assessments [1]–[3] have
proposed the use of reputation systems focusing on device trust
evaluation based on the device’s external factors, inter-device
relationships and historical contributions of data. While the
historical perspective is valuable, it does not completely reflect
the immediate trustworthiness of data presented to the system

Fig. 1: Problem definition

in real-time. State-of-the-art studies [4], [5] have also explored
using machine learning (ML) models for data trustworthiness
classifications, but studies specifically focused on data trust
assessments within blockchain networks remain limited. In this
paper, we present a novel ML-based trust assessment technique
considering both historical reputation and real-time data trust
evaluation, and integrated into the blockchain system using edge
servers and validators.

Our contribution: Our approach recognizes that assessing
data exclusively on previous data contributions by the device
may ignore key contextual indicators affecting current data
quality. To counter this, we introduce a composite trust metric
that uses not only the device’s reputation over time, but also
a real-time assessment method to evaluate the data quality at
the time of submission. We employ multiple ML models at
two different levels for calculating the composite trust score
as well as the reputation score update. This improves trust
evaluation accuracy and strengthens the system’s resilience to
dynamic data conditions, contributing to increased data quality
and system reliability. In our proposed approach, blockchain
not only ensures the immutable storage of data but also aids in
establishing a robust reputation management system for devices
through the implementation of smart contracts. A support vector
machine (SVM) model is first employed at the edge server
level for initial labeling of data by considering the composite
score derived using SVM decision scores and reputation scores.
We propose to execute the SVM model via blockchain smart
contracts, mitigating the impact of potential misbehavior or ma-
licious actions by edge servers. Utilizing a decentralized oracle
platform for implementation, the smart contract can invoke the
oracle API to conduct SVM model classifications on the data
uploaded by the edge servers, ensuring security and reliability.
Subsequently, at the blockchain level, validators implemented
as oracle services apply various ML models specifically to data
records identified as likely to be misclassified by the SVM
model. This reduces the number of validations to be run by the
validators. This comprehensive approach gives a more detailed



and responsive knowledge of data reliability, guaranteeing that
the system can adapt to changing data dynamics and spot
potential abnormalities or malicious inputs before they are added
to the system. Our proposed approach could be especially
important in use cases where the availability and dependability
of data are crucial, such as healthcare, industrial applications,
or the monitoring of sensor data in food supply chains.

The remainder of this paper is structured as follows: The
related work is covered in Section II. Section III outlines our
proposed solution, and Section IV analyzes the experimental
results. Finally, Section V provides concluding remarks and
directions for future work.

II. RELATED WORK

Numerous studies in the literature have explored solutions to
trust issues associated with IoT data. The use of blockchain in
IoT for ensuring data provenance and immutability is a notable
trend [6]–[8]. While these blockchain-based systems signifi-
cantly enhance data security, they lack data trust evaluation at
the point of origin. The authors in [9] have proposed a layered
architecture that evaluates sensor observation trustworthiness
and adapts block verification to increase end-to-end trust.

Trust modelling in IoT data has been studied in several recent
studies. Data-centric and entity-centric are two predominant
categories of trust attributes used in IoT data trust models. Con-
ventional methods often focus on entity-centric trust evaluation;
however, they might not provide an accurate representation of
data trustworthiness. Therefore, recognizing the significance of
data-centric evaluation is crucial, as emphasized by the authors
in [10]. Another study [11] has presented a semi-centralized
computational trust model by combining direct and indirect trust
information between IoT devices engaging in data exchange.

ML techniques for bad data identification have also gained
particular interest in recent research studies. ML methods have
been used to assess IoT data trustworthiness in [4], [5]. These
investigations highlight a common challenge: the scarcity of ap-
propriately labeled IoT datasets for conducting ML-based anal-
yses. To address this challenge, researchers have implemented
various strategies to generate labels for training ML models.
For instance, in [4], the authors employ clustering techniques
to assign labels to data collected by sensors. However, this
method is criticized in [5] for lacking a solid foundation that
unsupervised methods like clustering can assign accurate trust
labels to the data. Consequently, a novel data synthesis approach
called Random Walk Infilling (RWI) has been introduced in [5]
to generate untrustworthy data from trustworthy IoT sensor data,
addressing the limitations of existing methodologies.

Reputation management in the context of IoT sensor networks
has gained considerable attention in recent years. Several frame-
works have been proposed to assess the trustworthiness of IoT
sensors based on their historical behavior. In our previous study
[12], we presented an adaptable framework intended to address
the problem of IoT data reliability in blockchain systems.
By employing a ML model to classify data and maintaining
reputation scores for data sources, this approach provided a
comprehensive solution to identify and reduce the amount of

faulty sensor data that is entered into the blockchain system.
In parallel, researchers have explored real-time data assessment
techniques for ensuring IoT data quality and integrity as in [13].

In the broader context of reputation management, there are
some hybrid approaches as in [10] that incorporate elements
of both entity reputation and real-time data assessment. How-
ever, these approaches focus on social IoT networks and the
reputation scores are generated based on trustor-trustee rela-
tionships and recommender systems rather than historical data
contributions. In [12], we used evaluations of historical data
contributions to update reputation scores. However, the approach
used a single ML model which is executed by the edge servers as
well as validators on the blockchain without any initial filtration
at the edge server level.

Our research aims to bridge a gap in the existing literature
by introducing a novel approach that employs ML models,
edge servers and validators to identify untrustworthy IoT data
on blockchains. This approach integrates historical reputation
with real-time data assessment for comprehensive data trust
evaluations. By integrating these dimensions, we aim to enhance
the reliability of data trust evaluation, thereby reducing the risk
of bad data infiltrating blockchain-based IoT systems. This ap-
proach has the potential to significantly improve the assessment
of reliability in IoT data, contributing to more trustworthy and
efficient IoT applications.

Table I provides a summary of our paper’s contribution
compared to related works.

TABLE I: Comparison of proposed solution with existing work

Characteristic Ref.
[7]

Ref.
[4]

Ref.
[5]

Ref.
[12]

Our
Work

IoT data trust assessment – ✓ ✓ ✓ ✓
Data source reputation – ✓ – ✓ ✓
Real-time data trust evaluation – ✓ ✓ ✓ ✓
ML models for data trust evaluations – ✓ ✓ ✓ ✓
Blockchain-based solution ✓ – – ✓ ✓
Combines reputation and current data
trust

– – – – ✓

III. PROPOSED SOLUTION

In this section, we provide a comprehensive overview of our
proposed approach. Fig. 2 shows a high-level illustration of
how the suggested architecture would be deployed. Edge servers
serve as the blockchain nodes tasked with gathering sensor data
and transferring it to the blockchain. It is essential to deploy
multiple edge servers to effectively gather data from sensors in
distinct localities. The architecture is well-suited for applications
involving IoT data sharing or storage, particularly in consortium-
style blockchain deployments where multiple known entities
collaborate within a shared network. The InterPlanetary File
System (IPFS) is used for storing data off chain to improve
storage scalability and reduce data redundancy in comparison
to blockchain systems.

The solution incorporates a two-tiered data evaluation process.
Initially, data undergoes assessment before its upload to the
blockchain, followed by a secondary evaluation post-upload. It
integrates historical data source reputation with real-time data
evaluations performed by ML models, enabling comprehensive



Fig. 2: Deployment of the proposed solution

assessments of data trust within blockchain systems. Moreover,
it features a truly decentralized trust evaluation and reputation
update mechanism on the blockchain. The process entails a
series of steps illustrated in Fig. 3 and outlined below.

Fig. 3: Overview of the proposed solution

Step 1: Data Upload - The process initiates with IoT sensors
situated within a specific neighborhood transmitting data col-
lected in real-time to an edge server.
Step 2: SVM Model Classification - Upon data reception at the
edge server, preprocessing activities encompass data cleaning,
normalizing, and feature engineering to prepare the dataset for
subsequent analysis. Utilizing an SVM model which is pre-
trained, the data is classified into trustworthy and untrustworthy
categories. To mitigate potential misconduct by edge servers, the
SVM model execution can be integrated into smart contracts run
on the blockchain, leveraging decentralized oracle networks for
off-chain computations. Furthermore, the SVM model calculates
decision scores for each data record, indicating their proximity
to the decision hyperplane. These raw decision scores are then
scaled using a sigmoid function to provide a more interpretable
metric for trust assessment.
Step 3: Reputation Score Retrieval - The edge server obtains
the previously calculated reputation scores (Rs) for correspond-

Algorithm 1 Calculating Composite Trust Score and Labeling
Data at Edge Server

Require: Ds: Array of decision scores for test data, Rs:
Reputation score for the sensor, Th: Threshold for binary
classification

Ensure: Lp: Predicted binary labels based on composite score
1: function WEIGHT FUNCTION(Ds)
2: λpeak ← 1 ▷ Peak weight of the Gaussian curve
3: s← 0.05 ▷ Controls the spread of the curve
4: return λ← λpeak · exp

(
− (Ds−0.5)2

2·s2

)
5: end function
6: Th ← 0.5
7: function CALCULATE COMPOSITE SCORE(Ds)
8: D̃s ← {}, Cs ← {}
9: for di in Ds do

10: D̃s ← D̃s ∪ 1
1+exp(−di)

▷ Scale decision scores
11: end for
12: for dj in D̃s do
13: λj ← WEIGHT FUNCTION(dj)
14: cj ← (1− λj) · dj + λj ·Rs, Cs ← Cs ∪ cj
15: end for
16: end function
17: function THRESHOLD BASED LABELING(Cs)
18: Lp ← {}
19: for cj in Cs do
20: if cj > Th then Lp ← Lp ∪ 0
21: elseLp ← Lp ∪ 1
22: end if
23: end for
24: return Lp

25: end function

ing sensors from the IPFS.
The main steps involved in step 4 and 5 are summarised in
Algorithm 1.
Step 4: Composite Trust Score Calculation - To evaluate
data trustworthiness at the edge server level, we introduce a
Composite Trust Score (Cs). This score is derived by combin-
ing the scaled decision scores (D̃s) obtained from the SVM
classification with the reputation scores of the sensors, which
are retrieved from the IPFS in the preceding step. Visualization
of SVM model misclassifications reveals a concentration closer
to the decision boundary, resulting in a higher occurrence of
misclassifications near the mid-point (i.e., 0.5) of scaled decision
scores. Thus, a weighted sum is employed, giving greater
importance to reputation scores in such scenarios. This balance
is achieved using a trust score weight (λ), which is modeled as
a Gaussian distribution peaking at 1 for a scaled decision score
of 0.5. The Composite Trust Score (Cs) is then calculated as in
equation (1).

Cs = (1− λ) · D̃s + λ·Rs (1)
Step 5: Trust Labeling Based on a Threshold - Data entries
with composite trust scores surpassing a specified threshold
(Th) are categorized as trustworthy, while entries with lower



scores are deemed untrustworthy. Additionally, data points in
near proximity to the decision hyperplane (e.g., with Ds values
between 0.2 and 0.8) are identified as ‘misclassification-prone,’
acknowledging the inherent uncertainties near the hyperplane.
Step 6: Data Upload to IPFS - The labeled data entries and
their corresponding trust evaluations are stored securely on the
IPFS.
Step 7: Hash Upload to Blockchain - The corresponding
IPFS hashes associated with the records are then stored on
the blockchain, guaranteeing data integrity, transparency, and
resistance to tampering.
Step 8: Verification by Validators - Within the blockchain,
validators play a crucial role in evaluating the trustworthiness
of data records identified as ‘misclassification-prone.’ By execut-
ing validation processes through decentralised oracle services,
which leverage pretrained ML models for independent analysis,
the system ensures robust security when integrating ML models
into the blockchain, mitigating potential vulnerabilities associ-
ated with this integration.
Step 9: Vote Collection and Evaluation by Smart Contract
- Validators’ evaluations are then submitted as votes which are
collected via a smart contract. The smart contract evaluates the
collected votes and determines the majority vote. Depending on
the majority consensus, the labels of data records are verified,
and new entries are added with the correct labels in cases
of discrepancies. Hence, the verification by validators acts as
a distributed ensemble model, employing a majority voting
mechanism for consensus. This process significantly enhances
the refinement of data trustworthiness, leveraging the effective-
ness of ensembles in addressing classification challenges when
compared to individual ML models.
Step 10: Reputation Score Updates - In the final step,
reputation scores for corresponding sensors are updated using
Algorithm 2. This update incorporates combined predicted labels
(Lc), which consist of SVM classifications for data records
with D̃s values outside the range prone to misclassification, and
the majority assessments provided by validators for the records
identified as ‘misclassification-prone.’ The new reputation scores
are securely stored on the IPFS, ensuring ongoing accessibility
to edge servers for continuous data trust assessments and further
enhancing the system reliability.

SVMs provide a unique measure of a sample’s proximity to
the decision boundary, offering us the advantage of obtaining
immediate trust scores in the form of decision scores generated
by the model. This approach is not only lightweight but also
significantly faster than running multiple models. By leveraging
SVM, we employ decision scores for an initial filtration step at
the edge server, streamlining the process and alleviating the need
for validators on the blockchain to validate every data record.
This also facilitates quicker data availability in the system.

IV. EXPERIMENTS

A. Experimental Configuration

Fig. 4 illustrates the prototype system implementation. The
blockchain was developed with Hyperledger Fabric v2.4.4 using
Java, employing Raft as the consensus algorithm. The prototype

Algorithm 2 Updating Reputation Scores on Blockchain

Require: Lc: Combined predicted labels from SVM and val-
idators.

Require: NT True predictions count up to i− 1th iteration.
Require: NA: All entries count up to i− 1th iteration.
Ensure: Rn: New reputation score for the sensor.

1: function REPUTATION SCORE UPDATE(Lc, LT , LA)
2: Rn ← {}
3: NA ← NA + |Lc| ▷ Add current entry count at ith

iteration
4: L1 = {x ∈ Lc | x = 1}, Rn ← NT+|L1|

NA

5: return Rn

6: end function

network consisted of one orderer node and two organizations,
each with a peer node. ML models were implemented in
Python. A client application in Java was created to simulate the
interactions of the edge server with IPFS and the blockchain,
as well as those of the validators with the blockchain’s smart
contract. The network was deployed on a server powered by an
Intel Xeon CPU at 2.10 GHz, featuring 20 cores and 128 GB
of RAM, running Ubuntu 20.04.

Fig. 4: Prototype implementation

In our experimentation, we used temperature data from the
Intel Lab dataset [14], a comprehensive collection of real-world
sensor data gathered from the Intel Berkeley Research lab. The
dataset includes readings from a network of 54 sensors installed
throughout the lab over the course of more than a month,
capturing a variety of environmental measurements such as
temperature, humidity, light, and voltage at regular intervals. In
our research, this dataset was used to evaluate the performance
of multiple ML models, offering a robust and realistic bench-
mark for model comparison. To model untrustworthy data, we
applied the RWI algorithm as recommended in [5], to generate
untrustworthy data corresponding to each original temperature
reading in the dataset. The dataset was carefully labeled: outliers
identified in the original data were marked as untrustwor-
thy, while data without outlier characteristics were labeled as
trustworthy. All data points produced by the RWI algorithm
were labeled as untrustworthy. Data cleaning, normalizing, and
feature engineering was done according to the guidelines in
the same reference. Following feature engineering, the data was



used to train a linear SVM model with a regularization parameter
of 1, which served as the model executed by the simulated edge
servers.

For blockchain-based validation, three models were utilized
by validators: K-Nearest Neighbors (KNN), Multilayer Percep-
tron (MLP), and Random Forest. The KNN model employed 3
neighbors with a distance-based weighting scheme. The MLP
was configured with a single hidden layer of 30 neurons and
optimized using the Adam solver, while the Random Forest used
300 trees with a maximum depth of 30. These parameters were
carefully selected after experimenting with a range of values to
optimize each model’s performance on the dataset. Validators’
votes were collected by a blockchain smart contract for each
record of data being validated. The final evaluation of the data
was then determined by a majority vote mechanism within the
smart contract.

B. Results

The optimal model configurations were identified through sys-
tematic parameter tuning to achieve peak performance. Model
behavior across varying levels of malicious activity or faults
was analyzed by including different percentages of untrust-
worthy instances in the test set. The final accuracy values of
using our method were determined considering the combined
result of using SVM and threshold-based labeling using the
composite trust score at the edge server level, in conjunction
with the complementary models—KNN, MLP, and Random For-
est—employed by blockchain validators for instances identified
as ‘misclassification-prone’ at the edge server.

The resulting average accuracy outcomes are shown in Fig.
5, along with a comparative analysis with the study presented
in [5], where we replicated their approach of using linear SVM
and MLP with a single hidden layer in our experiments. These
models were selected for comparison as they achieved the high-
est accuracy results in the referenced study. Our observations,
as seen in Fig. 5, indicate that these individual models produce
significantly lower accuracy values compared to the combined
approach we introduce in this paper. Furthermore, [5] did not
investigate the impact of varying percentages of untrustworthy
data. In contrast, our results show that our proposed approach
consistently achieves higher accuracy, even under conditions of
increased untrustworthy data percentages.

To evaluate the blockchain-related performance characteristics
of our approach under varying transaction loads, we recorded the
time taken by the two distinct processes—data submission and
voting—as the transaction count increased from 1,000 to 10,000
in increments of 1,000. We conducted multiple experiments
varying block-time (1, 2, 3 seconds) and block-size (256 KB,
512 KB) configurations within the blockchain. The execution
times for each transaction load across the two processes are
illustrated in Figures 6 and 7, respectively. All blockchain
configurations experience an increase in processing time as
the volume of transactions increases. As clearly seen in Fig.
6, larger block sizes often result in longer completion times
because a block is only generated when the block time expires
or after the configured block size is reached. On the other hand,

Fig. 5: Accuracy comparison with related work at different
percentages of untrustworthy data

smaller block sizes facilitate quicker block creation, making
them available on the blockchain sooner and thus reducing
overall completion times. These figures offer valuable insights
into the scalability and performance of our system under varying
transaction loads, highlighting its efficiency and responsiveness
in managing concurrent operations.

Fig. 6: Time taken for data submission process

Fig. 7: Time taken for vote process
The average throughput of the system, in transactions per

second (tps), for each configuration is presented in Table II.
Notably, the configuration with a 1-second block time and a 256
KB block size achieved the highest throughput. Accordingly,
the average end-to-end latency results shown in Table III were
obtained using this optimal configuration.

This experiment evaluated the latency of the data trust evalu-
ation process from an end user’s perspective by simulating sce-



TABLE II: Average Throughput for Different Block Time and
Block Size Configurations

Configuration Throughput (tps)
Data Submission Voting

1s, 256KB 95.47 (±4.74) 6.58 (±0.78)
1s, 512KB 47.67 (±1.47) 5.60 (±0.75)
2s, 256KB 74.42 (±6.27) 6.54 (±0.89)
2s, 512KB 27.77 (±0.71) 6.15 (±0.82)
3s, 256KB 63.49 (±5.88) 6.18 (±0.77)
3s, 512KB 19.37 (±0.64) 6.01 (±0.79)

TABLE III: End-to-End Latency for Different Numbers of
Transactions

Transaction Count System End-to-End Latency (s)
10 No trust evaluation [15] 1.6190 (±0.0150)
10 With trust evaluation 4.2998 (±0.0231)
20 No trust evaluation [15] 1.7440 (±0.0122)
20 With trust evaluation 5.3767 (±0.0342)
30 No trust evaluation [15] 1.7990 (±0.0146)
30 With trust evaluation 6.4105 (±0.0516)

narios where the user submits 10, 20, and 30 transactions. Each
blockchain transaction is assumed to encapsulate data from 300
readings. The validation process is conducted in batch mode,
where readings in one transaction are assessed collectively rather
than individually. This batching approach aligns with practical
implementations where processing efficiency is enhanced by
handling data in groups. The latency metrics include the time
required for processing the data using the SVM model at the
edge server, storing data on the blockchain, validation using
ML models, and the voting process. To conduct a comparative
study, a baseline implementation of the blockchain network
was developed, utilizing blockchain with IPFS solely for sensor
data storage, as described in [15]. The latency results for both
implementations are presented in Table III.

As seen in Table III, the data trust evaluation process adds less
than 5 seconds of overhead for 30 transactions. This overhead
is acceptable when considering the overall time required for
the final applications where the data is used. In real-world
applications such as predictive maintenance in industrial IoT
systems or traffic prediction in smart cities, training machine
learning models typically require substantial time [16], [17]. For
instance, work in [17] shows their model for highway traffic
prediction has taken 1,000 to 10,000 seconds for training de-
pending on dataset size. Therefore, the additional time incurred
by the data trust evaluation process has no significant impact on
these applications. Furthermore, this evaluation does not affect
the availability of data on the blockchain, as the data is already
stored and accessible.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel method for evaluating data
trust in blockchain-based IoT systems using ML methods. The
proposed solution utilizes a composite trust metric that inte-
grates blockchain-derived historical reputation data with real-
time evaluations from SVM models, enabling more accurate
trust evaluations at the time of submission. Additionally, the use
of multiple machine learning models on the blockchain functions
as a distributed ensemble, enhancing precision in reputation

score calculations and improving overall system reliability. Our
results demonstrate substantial accuracy gains in identifying
trustworthy and untrustworthy records of IoT sensor data.

In future work, we plan to expand our research by exploring
advanced ML techniques (e.g., reinforcement learning, federated
learning) to improve the data trust evaluation accuracy and
the system’s responsiveness to dynamic IoT environments, as
well as optimizing validation mechanisms to reduce delays and
enhance overall system performance.
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