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Abstract—Federated learning (FL) is an intriguing approach
to privacy-preserving collaborative learning. Decentralised
FL is achieving increased favour for investigation due to
the mitigation of vulnerability for a single point of failure
and more controllability for end users over their models.
However, many existing decentralised FL systems face
limitations, such as privacy concerns, latency in aggregation,
and real-world implementation challenges. To mitigate these
issues, we introduce a novel FL protocol with a decentralised
Peer-to-Peer (P2P) system using Differential Privacy (DP). It
consists of a decentralised accuracy-based weighted averaging
mechanism for both enhanced privacy and model aggregating
accuracy. We implement our system in both virtual and real
environments to evaluate the performance of the proposed
mechanism. Moreover, we perform a comparative analysis of
our proposal with both existing centralised and decentralised
systems. To practically demonstrate the work, we consider a
real-world use case of a recommendation system using smart
carts. Experimental results show that our novel approach
efficiently performs privacy-preserved aggregations over a
decentralised peer network.

Index Terms—Federated learning, Peer to Peer, Communica-
tion Networks, Privacy, Machine Learning

I. INTRODUCTION

FL is gaining popularity across many real-world AI ap-
plications due to its ability to preserve data privacy while
enabling highly accurate Machine Learning (ML) models
trained in a collaborative manner. It allows organizations
to leverage the collective intelligence of distributed edge
devices, revolutionizing industries like healthcare, finance,
and the Industrial Internet of Things (IIoT). In the 5G/6G era,
the impact of FL is expected to be even higher, benefiting
from increased bandwidth and lower latency to enable real-
time, distributed learning. Instead of transmitting raw data
across networks, FL aggregates locally trained models from
user devices. By adopting this approach, FL effectively
mitigates privacy concerns associated with sensitive data. It
is implemented in two prominent types of network architec-
tures: central server-based and decentralised architectures [1].
Several FL approaches were published for both centralised
server [2] and decentralised architectures [3].

Decentralised FL settings are proposed as a potential
alternative to address the vulnerability of central server-

based single-point failures and server-oriented attacks in
the centralised FL setting. For instance, they include P2P
protocols [4], to improve communication efficiency [5], and
computational cost [6] or employ mechanisms such as se-
cure multi-party computation (MPC) [7], DP [8] or model
segmentation [9] to ensure privacy preservation. The major
challenge arises when attempting to seamlessly integrate
these individual updates into a cohesive and comprehensive
solution. For instance, some approaches prioritise commu-
nication efficiency but may not sufficiently address security
and privacy concerns or computational costs. They may make
assumptions like participants are semi-honest, which may not
be realistic in real-world scenarios. Conversely, while others
focus on achieving adequate security measures, they may
have limitations in communication, where these approaches
would be valid for systems with only a limited number of
peers. Therefore, in this paper, we aim to provide a P2P
mechanism that can efficiently handle many clients with
increased efficiency of aggregation of models, meanwhile
ensuring privacy and security of the local model updates.
For this, we propose a novel protocol that aims to provide a
fully decentralised aggregation via a public P2P network.

A. Our Contributions

The key contributions from our paper are listed as follows:
• A novel distributed model training mechanism using

distributed FL on top of a P2P network.
• Ensure that the proposed protocol securely communi-

cates over the public P2P network.
• Implementation of our novel protocol on a real-world

use case of supermarket recommendation system.
• Enables dynamic node discovery in a real P2P FL sys-

tem on a smart cart platform, unlike existing approaches
that assume pre-established connectivity.

B. Outline

The rest of the paper is arranged as follows: Section II
presents related works investigated. Section III provides an
overview of the system model. The architecture of the pro-
posed system is presented in Section IV. Section V provides
the methodology of the implementation. Experimental details
are provided in Section VI. The paper is summarised and
concluded in Section VII.979-8-3503-2687-1/23/$31.00 ©2023 IEEE



Fig. 1: Overview of the P2P FL protocol: KERNEL creates a cluster with SHELL peers. Then SHELL peers send model
parameters to KERNEL. Next, KERNEL creates generalised model using the pre-trained and received model parameters.

II. RELATED WORKS

A. Centralised Federated Learning

The concept of FL was introduced by Google in 2016,
focusing initially on a central server architecture. Many
frameworks such as flower [10] are recently introduced for
developing centralised FL systems. To enhance security,
researchers have explored parameterized server architectures,
leading to trade-offs between privacy and system perfor-
mance. However, communication efficiency has often been
the primary concern in centralised FL approaches. Striking
a balance between privacy preservation, computational effi-
ciency, and overall system performance remains crucial in
the evolving field of FL.

B. Decentralised Federated Learning

Fully decentralised P2P FL has a high potential of enhanc-
ing privacy and communication efficiency over centralised
FL. Existing P2P FL mechanisms focus on specific aspects
like privacy or protocols. Comprehensive works addressing
all aspects are still lacking. For example, even though the
approach presented in [11] attempts to ensure the robustness
of the aggregation procedure by detecting abnormal local
gradients, still the mechanism may encounter privacy issues
from backdoor attacks while attempting to preserve conver-
gence guarantee. P2P Gossip protocol [5] is also customised
according to different requirements of implementing a de-
centralised FL system. The approach introduced for gossip
model segmentation mechanism in [9] to reduce training time
and increase bandwidth utilization when achieving conver-
gence. However, this convergence trend does not improve
after a specific number of replicas. Thus, it limits the number
of models segmenting replicas used.

Therefore, to balance the trade-offs over the model con-
vergence, utility, and privacy, we propose a novel solution
that enables privacy-preserved, fully decentralised FL among
many peers. Furthermore, to show the practicality of our
proposal, we implement the P2P system on a real-world use
case scenario of a smart cart system.

III. SYSTEM MODEL

An overview of our novel P2P FL protocol is shown in Fig.
1. This protocol has two types of peer nodes: SHELL and
KERNEL peers. If a device hasn’t gathered data for model
training, it will be considered a SHELL device, while others
will be classified as KERNEL devices. Continuous connec-
tion to the network is maintained by the SHELL devices.
Upon request, their model parameters are sent to KERNEL

peers. The KERNEL peers perform the aggregation process.
If KERNEL requires an update to its local model from other
models in the network, it requests a model from SHELL
and downloads it. In the event that sufficient models are
not received by the KERNEL peer, additional models are
requested from another SHELL peer until enough models
are obtained. This process is summarised in to four stages
as follows:

• Clustering : The IoT devices, connected to the bridge
module, form clusters with a single KERNEL peer and a
selection of SHELL peers from the distributed network.

• Model Requesting : The KERNEL peer sends model
request messages among the SHELL peers within the
cluster.

• Model Receiving : When the SHELL peers receive
a model request, they send the corresponding model
parameters to the KERNEL peer.

• Model Aggregating : The KERNEL peer processes the
received model parameters, aggregates them with its
locally trained model, and creates a global model.

IV. PROPOSED ARCHITECTURE

A. Novel P2P Federated Learning Process

The architecture of the proposed novel decentralised FL
process is illustrated in Fig. 2. First, each peer checks
whether it has a sufficient new quantity of locally collected
dataset. If it is available, the peer assigns its role as a
KERNEL. Otherwise, it is considered as a SHELL. Then,
peers initiate the clustering process, ensuring that each cluster
has only one KERNEL peer and the others are SHELL
peers. This method is used to reduce the communication
overhead. The KERNEL collects available local models from
the SHELL peers connected to its cluster. During the model
collection, it periodically checks the accuracy. If there is a
large accuracy difference between the local model and the
received model, KERNEL rejects the received model and
removes that peer from the cluster. The process of collecting
model parameters continues until the predefined requirements
are fulfilled. Before the aggregation process, KERNEL adds
differential privacy to the locally trained model to mitigate
attacks on the training data when someone retrieves its
local model. Next, aggregation is done by calculating the
weighted average, where the weights are assigned based on
each model’s accuracy. Finally, KERNEL compresses the
aggregated model and saves it in the cache memory, which
is ready to be send it to the network. Then, the peer changes
it role as a SHELL until the next round. This peer may get



Fig. 2: The P2P FL process is as follows: (1) KERNEL peer sends a model request to selected SHELL peers; (2) each
SHELL peer trains a local model using their respective dataset; (3) model parameters serialised and compressed; (4) SHELL
peers send their model parameters; (5) KERNEL selects models to aggregate from the received models; (6) before running
the aggregation process, DP is applied to the local model; (7) accuracy-based weights are calculated to determine the
contribution of each model in obtaining the averaged model; (8) aggregated model is created by averaging all the models.

assigned when creating a new cluster with a different set of
peers. This is continued until all peers get target accuracy.
B. P2P Communication Protocol

Fig. 3: In the system, the KERNEL peer sends a model
parameter request to the bridge device. The bridge then
forwards the request to the destination of the SHELL peer.
The SHELL fulfills the request, and the bridge subsequently
forwards response back to the KERNEL.

As per the aforementioned approach, main issues for
accessing the public network (internet) to share trained model
parameters from a SHELL to a KERNEL are the Network
Address Translation (NAT) routers and firewalls. The most
suitable solution for communication between peer devices is
through an intermediary trusted device. This intermediary has
a public static IP. Then, they can easily be located by any
peer device from the internet. We define this intermediary
device as the bridge device. As illustrated in Fig. 3, these
devices have the capability to forward received data to the
respective destinations. In this network, there can be multiple
bridge devices that can act as intermediate devices.
C. Security and Privacy Mechanism

The user’s personal data is collected on their mobile phone
and shared among peers as model parameters. Here, the peers

are the smart carts in a store, which are securely connected
to the mobile phone. The smart cart acts as the first layer
of privacy protection, ensuring that the user’s data cannot be
identified through the use of model parameters.

Algorithm 1 Aggregating recommendation models

Require: n = aggregation cluster size; p = parameter array;
a = accuracy array; x = x test; y = y test;

1: function AGGREGATERECEIVEDMODELS(n,p,a,x,y):
2: Set kernelModel to createModel()
3: Set kernelModel weights to p[size(p)-1]
4: Set model analysing Acc(x,y)
5: for i = 0 to size(p) do
6: totalAcc = sum(a)
7: avgW = p[i]∗a[i]+p[size(p)−1]∗a[size(p)−1]
8: Set kernelModel weights to avgW
9: Set a[size(p)-1] = accuracy of kernelModel

10: end for
11: return avgW
12: end function
13: Return averaged-weights

As illustrated in Algorithm 1, model parameters are shared
in an aggregated form, making it impossible to recover data
through these parameters. This is achieved through the use of
an aggregation algorithm that incorporates more generalised
models collected from other peer devices. This process serves
as the second layer of privacy protection. In algorithm 1 the
model analysis we tested received model accuracy with the
local model. If the received model accuracy is in between



local model accuracy we accept that received model for the
global model aggregation process.

The trained model further undergoes the addition of DP
as the third defense layer before being used in the algorithm.
This further ensures that the sharing parameters cannot
retrieve the original training data, thus providing greater
protection of the user’s privacy.

V. METHODOLOGY

The primary objective of our work is to demonstrate a
collaborative FL platform for privacy-preserved decentralised
ML in the IIoTs. For this we implemented a simulation of
a fully distributed P2P network. On top of the network, we
run the proposed P2P FL platform. For the simulation of FL
protocol, we selected a real IIoT use case. Therefore, we im-
plement the proposed protocol by considering a supermarket
smart cart system. The FL models are trained for a recom-
mendation system in the supermarket app that provides user-
specific recommendations based on purchases. As shown in
Fig. 4, the smart cart behaves as an edge device in the
network. In this network, there are two types of smart carts
named child carts and parent carts. As previously discussed
in Section IV, the parent cart has a bridge module with a
public IP address. With this, a child cart does not necessarily
need to have a public IP address. In the development of
a P2P network comprising smart carts and mobile devices,
after collecting enough data for model training, the smart cart
connects to the network as a KERNEL and requests models
from peer devices. Peer devices send the requested models
to the smart cart.

Fig. 4: Child carts and parent carts connection.

VI. EXPERIMENTS RESULTS

A. Experimental Settings

The experiments were conducted in both centralised and
decentralised systems to evaluate the performance of our
proposed protocol in comparison to existing FL algorithms.
We employ both virtual and real physical environments
for our experimentation, utilising docker containers for the
virtual setup. In the virtual environment, we make a 6-
peer network, while in real deployments, we use a 12-peer
network. Our study focused on a Neural Network (NN)-based
ML model, consisting of three dense layers with the Rectified
Linear Unit (ReLU) activation function.

B. Dataset Information

Our NN model is trained using a supermarket dataset
available in Kaggle [12]. Before training the ML model,

the dataset undergoes a pre-processing step. The input
parameters consist of customer gender, current date, and
food items. For the testing dataset, we randomly selected
0.01% of the data from the selected dataset. With these pre-
processing steps, the ML model is effectively trained using
the supermarket dataset.

C. Convergence Performance of Novel protocol vs Cen-
tralised FL FedAvg Protocol in Virtual Environment

We test our proposed weighted average protocol in a
decentralised network and compare it with the existing
centralised FedAvg algorithm [2]. The experiments are con-
ducted in a Docker virtual environment using a 6-peer
network for both centralised and decentralised networks.
We use neural network model for testing this experiment
in both centralized and decentralized system. We trained
the model for 10 epochs using a batch size of 128, and
we specified a validation split of 20% of the training
data. During this training process, we applied the Early
Stopping callback. We repeat the experiment 12 times and
calculate the average values of the results. Fig. 5 presents
the results of the experiments. Our neural network model
achieves convergence at an accuracy of 91.12%. The results
indicate that our proposed method requires fewer iterations
to reach convergence compared to the centralised network
results. Based on these findings, we can conclude that our
decentralised system performs well when compared to the
centralised FedAvg algorithm.

Fig. 5: Centralised federated averaging network convergence
compared with decentralised weighted averaging algorithms.

D. Convergence Performance of Novel protocol vs Decen-
tralised FL FedAvg Protocol in Virtual Environment

In this experiment, we compare our proposed weighted
averaging system with the FedAvg algorithm in a decen-
tralised network [5]. The experiment is conducted in a
Docker virtual environment to obtain the test results. We
utilise a decentralised weighted averaging 6-peer network
and a decentralised fedAvg 6-peer network for the evaluation.
For this test, we requested 2 models from the network for the
model aggregation process and received a model aggregated



with the local model using a two-by-two model aggrega-
tion mechanism. The experiment is repeated 12 times, and
the average details are calculated. The Fig. 6 illustrates
the results obtained. According to the figure, both models
achieve convergence at an accuracy of 91.12%. However,
the weighted averaging system requires only 14 iterations to
converge compared to the FedAvg method, which requires
29 iterations. We identify that the main reasons for this per-
formance improvement are the utilization of model accuracy
for weighted averaging and the filtering of biased models.

Fig. 6: Decentralised network weighted averaging and
federated averaging algorithms convergence comparison.

E. Convergence Performance of Protocol in Real Environ-
ment

In this experiment, we conduct it in a real computer
environment utilising 12 computers, each equipped with a
Core i7 processor. P2P communication is established through
the local network. We use a 3-layer NN Model for each
and every computer and run the whole network. Then we
gather convergence results of every computer. We measure
the accuracy of the 12 devices and calculate the average
values. According to Fig. 5, we observe that the FL system
converges after 16 iterations. When comparing the results in a
virtual environment in Fig. 8 to this real environment, there
is an increase of 2 iterations. In the real environment, we
identify network data losses when some KERNEL-requested
models are not received due to the sender’s network issues,
such as latency. Therefore, such performance issues can
cause additional iterations compared to a decentralised virtual
environment. Nonetheless, our method still performs well
when compared to both centralised and decentralised FedAvg
methods.

F. Analysing the Impact of Cluster Size on Aggregation Time

In Fig. 7, we observe that increasing the cluster size
results in longer processing times for processes such as data
receiving, model analysis, and aggregation. Model receiving
time, which is the time taken to receive all models from
SHELL peers to KERNEL peers, varies linearly with in-
creasing the cluster size and is also affected by network
bandwidth, leading to varying times across different peers.

The analysing time, which is the duration taken by the
KERNEL to assess model suitability and accuracy, shows
exponential variation with cluster size. When increasing
cluster size, the received quantity of model parameters will
increase, thereby increasing the number of analysing models.
As a result, the analysis process takes an increased amount of
time with an increase in cluster size. Therefore, maintaining
a minimum cluster size is suggested to prevent efficiency
compromise due to exponential variations in aggregation and
convergence time.
G. Discussion

A comparison of the proposed method with existing per-
tinent works is presented in Table I. None of the existing
works consider both the aspects of privacy-preservation and
enhancing aggregation efficiency we present in our work.
Based on the obtained results, we can consider that the
proposed method outperforms both the existing centralised
and decentralised networks while also achieving better con-
vergence with a minimum number of iterations. The proposed
decentralised method allows for separate aggregation, which
enhances the accuracy of the model.

We have identified our proposed method has lower compu-
tational complexity compared to the centralised aggregation
method because we aggregate model-limited models for end
devices, and the model-sharing mechanism distributes the
computation to other end devices. Unlike the centralised
approach which requires all n clients for T rounds in the
network to be aggregated, a KERNEL device only has to
aggregate an average of n/k models, where k is the total
number of KERNEL devices in the network. One KERNEL
device only needs to perform aggregations only a limited
t; (t < T ) rounds until they gather sufficient data to be
switched to a SHELL. Therefore, the aggregation overhead is
distributed over multiple devices. In experiments, when two
KERNEL devices run two 6-peer networks, the aggregation
overhead is reduced by 50% per aggregator, compared with
a 12-client centralised aggregator.

These findings highlight the potential of the proposed
concept and demonstrate its effectiveness in improving the
accuracy of FL systems.

TABLE I: Comparison of our solution with existing works.

Characteristic Ref.
[13]

Ref.
[14]

Ref.
[15]

Ref.
[16]

Ref.
[17]

Our
Pro-
posal

Decentralised Model Aggregation - - ✓ ✓ - ✓
Use Real-time data ✓ ✓ ✓ ✓ ✓ ✓
Use of differential privacy - - - - - ✓
Evaluate receiving model accuracy - - - - - ✓
Aggregate model sequentially - - - - - ✓
Peer forwards generalised model to
the network

- - ✓ ✓ - ✓

VII. CONCLUSION

This research proposed and implemented a secure col-
laborative FL P2P system for model parameter sharing.
The architecture is fully decentralised, encompassing both



Fig. 7: Comparison of cluster size vs. receiving time, average analysing time, and average aggregation time.

Fig. 8: Decentralised convergence in real environment.

model training and model aggregation. Security concerns are
addressed through the application of differential privacy and
generalized model building. Peer identification is achieved
using a distributed hash table and routing table. Model
aggregation is performed using an accuracy-based weighted
averaging system. The protocol is evaluated in both real
and virtual environments using real-world datasets. Based on
the experimental results, our proposed system outperforms
existing centralised and decentralised systems with similar
aggregation accuracy over lesser iterations. Therefore, this
protocol establishes a decentralised FL platform for model
training and aggregation while ensuring user personal data
security. Even though our protocol is implemented within an
existing smart cart system, this generalised protocol can be
applied to other decentralized FL systems, such as disease
diagnosis prediction systems and fraud detection systems,
among others, which will be investigated in future works.
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