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Abstract—Metaverse is a key emerging digital transformation
concept for the next generation of cyberspace. It is expected to
create a self-sustaining virtual ecosystem of fully immersive, real-
time experiences with numerous opportunities for general users
and industries to interact with the world. With the introduction
of 6G networks and enabling technologies, the metaverse will
achieve its success on a large scale. However, with increasing
interaction using new technologies and a lot of third-party
services, there would be an arena for more possibilities of
privacy threats. Hence, privacy requirements are critical for the
metaverse. They should be cautiously investigated since we see
the commercial adoption of the metaverse is imminent. Therefore,
this paper discusses different privacy issues, potential Artificial
Intelligence (AI) related privacy attacks and possible solutions to
the metaverse. We initiate this by introducing the concepts of the
metaverse and privacy. We then discuss potential privacy issues
that could occur with the future metaverse. We present a new
attack approach utilizing combined membership inference and
reconstruction attacks that can be launched against metaverse
users. We also propose viable techniques and tools that could act
as possible solutions to those issues.

Index Terms—Metaverse, Privacy Attacks, AI, 6G, Virtual
Identity, PII

I. INTRODUCTION

Since the beginning of the Internet in the 1980s, cy-
berspace’s emergence has revolutionized people’s day-to-day
interactions with the world. Also, during a similar period, the
rise in wireless networks has completely changed the notion of
communication despite the physical barriers. It is visible that
the Internet, wireless networks, and associated infrastructure
have evolved tremendously within the previous decades, driv-
ing people to a facilitated, virtually connected environment.
The metaverse is very likely to become mainstream as the
industry’s attention to the metaverse has increased significantly
in recent years. One major example is the re-branding of the
Facebook company to Meta [1], which shows the company
invests heavily in making the metaverse a reality. According
to [2], almost 50% of Europeans have switched to at least
partial Work from Home (WFH) option compared to 12%
before the outbreak, showing the past COVID-19 pandemic
also had a significant impact on migrating from physical to
virtual workplaces.

The advent of 6G communication will speed up the meta-
verse’s ongoing efforts. Due to its capabilities, including ultra-
high peak data rates in the terabit range, very low latency
communication with less than one millisecond, enhanced
mobility from information exchange via all mediums, and
extremely high reliability beyond 99.99999%, the 6G will

serve as a key enabler for the metaverse [3], [4]. All these
features are significantly higher than the current 5G networks,
and they are crucial for the metaverse because it requires rapid
data transfers with minimum interruption for communication.
Faster rates will be especially important for multi-sensory
remote devices and high-quality 3D environment rendering.
In complex virtual environments, the capacity to manage
real-time connections between millions or even billions of
people is crucial for fostering a seamless social experience.
With the development of 6G networks, a variety of new
technologies will shortly be available, enabling the metaverse.
However, with these features, technologies, and great com-
munity interest with possible future engagement, metaverses
will undergo numerous privacy threats from internal providers
and external parties. Therefore, we bring this discussion of
privacy challenges through this paper. Our paper discusses
existing privacy issues, including possible attacks on metaverse
Al-based services, and a combination of potential existing
solutions that can be used to mitigate the identified privacy
issues.

Our Contributions: We summarise our contributions from
this paper in the following key points:

« We provide an overview and discuss the importance of
privacy in the metaverse.

« We identify a set of key privacy issues in the metaverse
over multiple communication layers, from the sensing
layer to metaverse services.

« The possible solutions that we can apply for the metaverse
privacy issues to mitigate and their relative impact are
discussed.

« We present a novel privacy attack on Al by combining
membership inference and reconstruction against meta-
verse wearable [oT devices to recover user emotional
status and real identity.

II. BACKGROUND
A. Metaverse

The term “metaverse” refers to a vast, computer-generated
virtual space that exists alongside the real world and was first
used in 1992 from a book named “Snow Crash” [5]. There
are individuals in this setting known as “Avatars,” and they
have characteristics that are equivalent to or even beyond those
perceived in the physical world. As a result of the Internet,
web technologies, and Extended Reality (XR), the metaverse



is now seen as a blend of the physical and digital worlds [6].
Low latency, reliable communication through 6G networks,
and technologies such as Al-based decision-making and edge
Al are key enablers of the metaverse. The XR application
quality will also be highly dependent on the capacity of the
6G wireless network to provide a fully immersive experience.

There are three steps in the development of the meta-
verse [6]: 1) digital twins - To make the virtual infrastruc-
ture/world match with the real world, 2) digital natives -
create virtual content by people, through methods such as
avatars, and 3) coexistence of physical-virtual reality - to
build a sustainable coexistence between the actual world and
the virtual world. It will also have a sustainable coexistence
that can work independently. For this, the metaverse would
include its own ecosystem having a virtual economy with
internal economic governance, metaverse commerce, a trading
system, and ownership [6]. The new technologies such as
Brain-Computer Interface (BCI) or haptics will enable sharing
of details up to emotional and sensation levels and facilitate
further content creation [7]. However, with innovations and
more ways of exposing personal details, inevitably, privacy
concerns are critically arising with the metaverse.

B. Privacy

In general, the concept of privacy assures data owners
the ability to control or influence their information on the
collection, storage, and by whom and to whom the information
may be disclosed [8]. There are many proposed taxonomies of
privacy based on different perspectives. One such example is
the consideration of different actions done on the information
of a data subject [9]: information collection, dissemination,
processing, and invasions. The General Data Protection Reg-
ulation (GDPR) Art. 4 [10] defines two categories of data to
be considered: personal and non-personal data. Personal data
is any data that can identify a specific person (data subject).
Conversely, non-personal data refers to data that has never
been associated with an identified or otherwise identifiable
natural person, according to [11]. Privacy aspects are crucial to
address before the commercialization of the metaverse, as the
adverse outcomes of privacy leakages will affect organizations
and millions or even billions of individuals. If privacy is
compromised in any aspect, the individuals will lose their
controllability in cyberspace, leading to the loss of trust on
the metaverse platform. The reflections would impact stock
prices of the metaverse platform providers and huge levies on
privacy leakages, such as GDPR fines [12]. The survey in [13]
shows privacy threats in the metaverse, including pervasive
data collection such as facial expressions, privacy leakage in
data transmission, processing and storage, and compromised
end devices. To show such a practical example of such privacy
leakage, we implement a use-case scenario of leakage of facial
expressions in Section V.

III. KEY PRIVACY ISSUES IN METAVERSE

Prior identification of potential privacy issues would help
mitigate the weaknesses beforehand and support a privacy-

enhanced metaverse. Therefore, we provide several privacy
concerns associated with the metaverse as shown in Figure
1. The detailed discussions are in the following subsections.
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Fig. 1: Metaverse overview and its associated privacy issues

A. Data Collection from Wearable and Sensing Technologies

With numerous technologies in the metaverse, many types
of multidimensional data will be generated during user actions.
They will be collected by multiple wearable and sensing
devices introduced with it. Extended reality/digital twin, haptic
engagement, and holographic telepresence are some of the
envisioned 6G technologies discussed in [14] that will be
available in the metaverse. However, these technologies will
have a high chance of exposing user privacy. For example, the
work [14] discusses that XR/digital twin could capture bio-
metric data and physical movements. Through these devices,
real-world biometric information, such as gait, eye or head
movements, physical characteristics, residence details, heart
rate, inferred emotions, and more, could be obtained. [15]
demonstrates how dwelling data, for example, might include
a information of objects in the household to create an individ-
ual’s psychological profile. Previously, the worst-case when a
password is lost is that a person would lose some data and have
to make a new one. However, if biometric data is exposed, it
will be permanent [6] since they are unique to the person.
Therefore, such data can be regarded as highly sensitive
Personally Identifiable Information (PII). Hence, if exposed,
sensing data and associated technologies in the metaverse pose
a significant vulnerability for users.



B. Attacks on Metaverse Edge Infrastructure and Services

In addition to the possibility of privacy violations from
the metaverse’s authorized data holders and processors, there
could be numerous flaws in the metaverse’s hardware, soft-
ware, and network.

1) Vulnerabilities of edge devices: Edge computing is a
model that minimizes the overhead of cloud computing by
moving computing resources closer to the “edge” or nearer
to end users [16]. Metaverse will use many edge devices for
its spatial, motion-sensing requirements and wearables such
as VR headsets. Since edge devices have limited capacity to
implement privacy preservation, issues are highly probable.
These edge devices can typically be available in various real-
world locations where attackers may have access. A malicious
edge computing device deployed or compromised by the
attacker may intercept or steal private information, including
biometric, motion, and health data. The work in [17] shows
issues like data manipulation and privacy leaks might occur in
the edge core infrastructure.

2) Al attacks: Metaverse may use a variety of Machine
Learning (ML) and AI models to determine user actions and
intentions from sensor data. An Al model has created a privacy
risk if they expose sensitive information about individuals.
The authors present a taxonomy of several threats against
ML models in [18]. An adversary can poison the input data
during ML model training or testing phases, making the model
less accurate or vulnerable to privacy threats. A malicious
entity can also use reverse attacks to reverse-analyse the model
during the testing phase. Deep Learning (DL) is also vulner-
able to adversarial attacks, model inversion, extraction, and
poisoning attacks, according to work in [19]. Attackers might
predict personal characteristics, such as location, preference in
gender, and political opinions, using public data [20]. Another
significant attack is model stealing, also known as prediction
poisoning, in which an adversary tries to duplicate a target
ML model’s functionality by taking advantage of its black
box queries, like inputs and outputs [21].

Inference attack is another significant privacy concern in the
metaverse, where, an adversary is attempting to infer certain
information, such as the membership or properties of a target.
Metaverse can consist of many associated ML models running
and shared among services such as object detection, facial
recognition, and motion sensing in wearable devices. If an
attacker gains access to these ML models but not directly to
data, they can still infer some properties on the data where
the ML models are trained on. For example, in the case
of membership inference, the attacker queries a trained ML
model to predict if a particular example was contained in the
model’s training dataset [18], [22]. Such an attack is critical in
the metaverse since an anonymized individual’s real identity in
private spaces can be revealed if ML models are trained with
activities done by the users in these private spaces. Another
possible attack is a reconstruction from gradients or deep
leakage, where an attacker attempts to recover the original
private dataset from the gradient information of publicly

shared ML models [23]. This will be particularly risky for data
owners with collaborative learning such as Federated Learning
(FL). Because in FL, multiple parties collectively train local
ML models based on their private data and later share the
local models that will be aggregated to create a unified global
model.

C. Tracking User Behaviours in Metaverse

The metaverse is associated with privacy concerns related
to user behaviour, as it provides many interactive opportuni-
ties for users with numerous sensor tracking, as discussed.
According to research describing the metaverse game Second
Life, most players (72% of women and 68.8% of men) exhibit
the normal behaviour similar to the reality when playing
the game [24]. Their results indicate that the organizations
behind the metaverse have the possibility of tracking the actual
behaviour of the majority of users. Since private information
like user preferences and emotions may be readily anticipated
through behaviour, there could be a significant possibility of
privacy breaches in the metaverse.

D. Privacy Issues of Virtual Identity

The metaverse users interact with the world through a
virtual identity. Their avatars could be different based on user
preferences. One possible issue with virtual identity is the
difficulty in verifying if the person behind the avatar is real
as the one that claims to be. We see there are several such
scenarios: 1) an avatar disguised as a surrounding object to
tracking users [6] 2) a compromised user profile, 3) a copy
of the profile that acts as the original owner of the avatar
through approaches similar to deep-fakes, 4) an Al claiming
to be a real person, especially with the rise of large language
models like Chat-GPT [25]. If a user profile is compromised,
an attacker can gain access to private conversations and any
historical data which is available. Further, an attacker may
masquerade as a person by using the same avatar and creating
a digital copy of the original user. They can be successful in
pretending to be the original victim, gaining access to locations
or interactions that only the victim is allowed. With the
possibility of detecting emotions in the metaverse, the robots
may be able to interact with users more realistically [26].
If an adversary uses this, they can extract sensitive private
information of individuals. Handling the sensitive data on
minors will also be challenging since they resemble a large
portion of XR users [6].

IV. PRIVACY SOLUTIONS FOR METAVERSE

To address the aforementioned privacy issues, we propose
the following set of solutions achievable with the existing
technologies.

A. Privacy Protection for User PII

The PII play an important role in metaverse privacy since
exposed PII reveals the identity of individuals, leading to
privacy leakage. Especially in future networks with fast and
new modes of data transmission, a massive amount of the
metaverse PII can be sent to a third party in milliseconds.



Many works mention techniques to ensure the privacy of PIIL.
The authors of [27] created a library that uses homomorphic
encryption for privacy-preserving image processing. The sur-
vey in [28] offers a detailed de-identification approach for
non-biometric and soft-biometric identifiers in multi-media
assets. Considering the avatars, the work in [6] discusses using
multiple avatars and privacy copies to add noise to create
confusion for attackers. Also, they discuss using temporary
private portions of the metaverse to interact among users to
prevent eavesdropping.

B. Privacy by Design Approaches

We consider privacy by design a crucial consideration that
should be made at every stage of the design process of
metaverse services. Independent authorities should assess the
capacity of these services. Furthermore, even without any prior
requirements from consumers, well-designed services should
protect privacy needs by default. That is, taking steps to secure
itself before a data breach occurs [29], [30]. Al privacy should
also be a primary consideration in the design process, as we
have shown many privacy attacks on Al in Section III. Some
privacy by design strategies discussed in [31], [32] are: 1)
reducing the amount of personal information that one collect
as much as feasible, 2) concealing personal data from plain
view and separating with decentralised manner, 3) processing
data at the highest possible level of aggregation, 4) maintaining
transparency of the data subjects, 5) enforcing a privacy policy
compliant with the law, and, 6) Adhering to the current privacy
policy and any applicable legal obligations.

C. Edge and Fog Computing Privacy Preservation

Edge computing increases data processing efficiency via 6G
networks in the metaverse with its capability of processing
data close to the user. However, it requires innovative data
privacy mechanisms due to its heterogeneity and distributed
nature [6]. The authors of [17] suggest lightweight data
encryption techniques, fine-grained information-sharing plat-
forms, decentralised security controls, and effective privacy-
preserving practices for edge computing.

Fog computing is a layer that sits between edge devices and
cloud servers, acting as a middleman for functions including
data filtering and forwarding to the cloud. With fog, only
a small percentage of data will be transferred to the cloud,
lowering cloud server overhead and network congestion. As a
result, fog computing could help to protect the privacy of IoT
and users by reducing the need to transmit sensitive data to
the cloud for processing [33]. However, as data from the edge
will directly reach the untrusted fog layer, privacy concerns
within the fog node must be considered. A compromised
fog node poses the possibility of attackers listening in on
or directly altering user data. To ensure privacy in Fog, the
work in [34] proposes a multi-functional data aggregation
methodology based on ML for fog computing with differential
privacy. To establish decentralised privacy, prevent poisoning
threats, and achieve high efficiency in fog computing, the work
in [35] employs blockchain-enabled FL.

D. Explainable Al (XAI) Privacy Measures

XAI can provide reasonable justifications for metaverse Al-
based decisions when implementing intelligence-based solu-
tions. Also, the decisions of these actions may be influenced by
how transparent and rational the Al judgment is. The authors
in [36] divide the explainability space for predictions/data
in the context of the security domain into three regions: 1)
explanations for the predictions/data themselves, 2) explana-
tions for covering privacy properties, and 3) explanations for
covering the threat model. Depending on the nature of the
data, privacy requirements, and complexity of the model as a
privacy solution, we must evaluate data, privacy attributes, and
model explanations. In the last few years, there has been a lot
of interest in the topic of XAl The survey in [37] displays
several related XAI works from 2007 to 2020 and categorizes
them by scope, technique, and application. They also show
that open-source XAI products have vastly improved in recent
years.

E. Blockchain-enabled solutions

Blockchain is a peer-to-peer network that uses a decen-
tralised and distributed public ledger technology [38]. It can
help many technological innovations associated with meta-
verse to improve their data privacy. It is also useful for
user identity in the metaverse. A person’s digital identity is
currently shared with several organizations, including entities
of government, social media sites, and other private/public or-
ganizations. The user consequently has relatively lesser control
over their personal information. Digital identities that are self-
managed or self-sovereign can be created using blockchain.
The person would then be in charge of their own online
identity. Users can access various digital services using this
identification to confirm their identity [39]. Non-fungible
Tokens (NFT) can be used to verify a user’s identity. The
work in [6] proposes blockchain can be used to enforce a
democratic process to implement guidelines and penalty sys-
tems for misbehaviours. To maintain the privacy of metaverse
user data without directly exposing to blockchain, several
techniques can be incorporated together with blockchain, such
as Multiparty Computation (MPC), Zero Knowledge Proofs
(ZKP), homomorphic hiding, and ring signatures [40].

F. Regulations and Standardisation at a Global Scale

Regulations would help address privacy issues, including
lack of awareness of rights and privacy concerns in public be-
cause doing so would automatically protect personal data. The
regulatory approach is divided into three groups by the authors
in [41]: Three types of regulation exist: 1) governmental, 2)
industry-driven, and 3) consumer or market-driven. Govern-
ment regulations and industry trends impact privacy issues on
a broad scale. Consumers are frequently aware of their privacy
rights, but [42] shows that they often lack the knowledge
and tools to use these rights effectively. Therefore, enacting
privacy legislation should ultimately protect consumers from
invading their privacy. The work [6] discusses the proposal of
standardising privacy trading through compensation for selling



personal data by the original data owners. However, despite
the efforts of standardisation, there can be a potential to exploit
user privacy in the metaverse as they may not be immune to
all possible leakages. Hence, suitable metrics by businesses
and governments should be in place.

Table I below compares the various solutions we presented
for resolving the issues in Section III.
TABLE I: Proposed privacy solutions for challenges in meta-
verse

Issues Addressed

Privacy Solution n ‘ B [ % ‘ D

Privacy protection for user PII H H H H
Privacy by design approaches H H H H
Edge fog computing privacy preservation H H M H
XAl privacy measures M M H M
Blockchain-enabled solutions H H M H
Regulations standardisation at a global scale H H IL, H

IA - Data collection from wearables and sensing technologies

IB - Attacks on metaverse edge infrastructure and services

IC - Tracking user behaviours in metaverse

ID - Privacy issues of virtual identity

Low Impact Medium Impact High Impact

V. CASE STUDY: HYBRID MEMBERSHIP INFERENCE AND
RECONSTRUCTION ATTACKS

A. Introduction

In the metaverse, wearable devices such as VR/AR headsets
are an essential component in establishing an immersive
experience. However, a recent study in [43] has shown that
many available devices have potential weaknesses in privacy,
such as flaws in privacy policies, no clarity on what data is
shared with third parties, less privacy customisability for users,
and lack of multi-factor authentication. Therefore, there is a
high possibility that privacy attacks may get launched against
these devices.

To provide an example of privacy vulnerabilities in the
metaverse, we designed an experiment by combining two
privacy attacks, membership inference [44] and reconstruc-
tion from gradients [45]. None of the associated works in
the metaverse discuss specific scenarios of privacy leakage
through attacks; thus, to address this gap, we demonstrate it
is highly possible to exploit privacy by combining multiple
attacks. Furthermore, the combined effect of the two attacks,
membership inference, and deep leakage data reconstruction
attack, are not assessed in previous works. Therefore, we
perform our attack where membership inference supports the
attacker in identifying a target and reconstructing the data
efficiently. In the metaverse, we expect decentralised ML
techniques such as FL to be heavily used to train and deploy
privacy-preserved Al models near the user end devices like VR
headsets. With FL, metaverse users locally train their wearable
device services with data like facial expressions. These may
contain captures of relatively less data, which are highly user-
specific. It is, therefore, possible that local models in FL get
overfitted to these data.

A data reconstruction attack attempts to recover the input
dataset by matching an adversarial model with the original

Recovered

o Y’ 2) Reconstruct  jmage
- useracr.'on
‘AA, q @
Metaverse FL/ML " ." 3) Uses pretrained
user Model model to classify

expressions

— Qe

Attacker

@

no

1) Determine user
membership state

4) Continuously
performing attack to
get a sequence of
events

Fig. 2: An attacker uses an ML model to infer the membership
state of a target user. If victim data is present, reconstruction
is done to recover user images from ML model gradients. This
process is repeated to track the user’s emotional behaviour.

Attack
model

gradients of a victim ML model [23]. An attacker launching
a data reconstruction attack attempts to imitate the gradients
of a target model f(x; W) by lowering the loss L, between
a randomly initialized set of gradients AW with the target
model gradients AW. This can be represented in the following
equation:

= ||[AW — AW|[} )

With the improved attacker gradients from equation 1, data &
that is close to original inputs = can be reconstructed as:

F e & —nAsL, @)

Considering metaverse capturing devices at the edge, the data
used to train FL models will be relatively low compared with
big-data sets. Therefore, it is possible to recover these gradi-
ents if an attacker gains access to these models by attacking the
devices like VR headsets. Due to resource limitations, weaker
privacy mechanisms may be used in these devices, or low
security in communication channels makes it easier for an
attacker to launch the attack. However, many studies [23], [45]
show it is an expensive procedure to recover the gradients with
an increasing number of data that was used to train the models.
Furthermore, FL may create many ML models that do not
contain data from the target user. Suppose the attacker acts as
an aggregator in FL from client updates with unknown origin.
In that case, the attacker will not get sufficient information
on the target unless they reconstruct all the received updates.
However, if reconstruction attacks were launched on all ML
models without knowing where to look for a target, that would
cause high computation costs for the attacker.

To make the attack more directed, the adversary can com-
bine membership inference to initially identify if the target
user’s data is included in a received ML model. Membership
inference can be used to identify if a certain data record
was present in the training dataset of a given ML model.
For example, if face images of the target user are used to
train the ML model, the adversary should be able to predict
the presence of user information if a sample face record of
the victim is available. For this, the attacker trains an ML



model named attack model. An attack model (2 is trained to
predict the membership state of a given data record x, whether
T € Dirgin Where Dyqip 18 the training dataset of a target
model f. This can be denoted in equation 3 as:

17 if x € Dtrain

3
07 if z ¢ Dtrain ( )

Q{f(x),y}) = {
where f(z) is the target model prediction and y is the
label for the record z. To train the attack model €2, the at-
tacker generates a dataset named shadow dataset Dgpqgon <—
{fs(@"),y',s}. Here, fs is called a shadow model, which
consists of the same NN architecture of the target model f.
We can create multiple copies of shadow models to increase
the amount of data in the shadow dataset. f,(z’) is the shadow
model prediction of a representative example data record z’
that resembles the original data in Dy,.4;,, of the target model.
These representative data records can be generated using
generative models such as Generative Adversarial Networks
(GAN) [46]. In the shadow set, y’ represents the labels of the
example records. The value s represents the membership state
of either In/Out.

B. Dataset and Procedure

For experimental simulations, we used the facial expression
recognition dataset FER-2013 consisting of 28,709 training
and 3,589 testing data in 7 categories of human expressions
in 48x48 pixel grayscale images. We used 400 images from
each class for the model training in experiments. We assume
this dataset resembles a scenario when a face recognition
device in a VR box captures or preprocesses the data in a
low-resolution setting for improved performance. For running
the experiments, we use a compute instance with a Xeon 2.20
GHz CPU, 26 GB RAM, and a GPU of NVIDIA Tesla T4. We
used a Neural Network (NN) with a hidden layer of 512 dense
units followed by a dropout layer with a 0.2 dropout rate as
the basic model in our experiments as the target model. We
named it V. We also used two different versions of this basic
NN by adding two more extra 512 dense layers in each version
named V7 and V5. In our experiments, we also used two other
Convolutional Neural Network (CNN) architectures: LeNet-5
and AlexNet.

C. Inference Attack

As the first step in the attack, we launch membership
inference with the aid of a dataset created from the outputs
of shadow models as discussed in Subsection V-A. To train
the shadow models, we used 1,120 input data records and
generated ten copies of shadow models. We simulated the
attacker’s dataset by augmenting original data at different
proportions to train the shadow models. Then, we train the
attack model with the data collected from the shadow models.
We set this attack model as a random forest classifier with
50 estimators. With the trained attack model, we evaluated
the membership inference accuracy of the attack model by
getting the membership state predictions for the target model’s
training dataset. The training dataset of the target model is

arranged in small batch sizes from 1 to 52, which resembles
small data availability in metaverse IoT sensor devices running
FL algorithms. Thus, the training dataset may get overfitted
to the local ML model. The impact of overfitting is analysed
by running a varying number of epochs of 1, 10, 20, and 30
by the target model. An attack on a particular local batch size
with one epoch configuration is run ten times to get an average
accuracy figure for the attack round.

We further considered the availability of a victim data
record. In a practical scenario, the attacker may not contain
an actual image example used in the target model’s training
dataset. Instead, they may possess a similar image of the target
user’s face. To simulate this, we modify the source image using
augmentation by rotating the target image to a random degree
during the attack phase. We evaluate the changes in attack
accuracy with 0%, 50%, and 100% augmentation percentages
of the test dataset, as shown in Figure 3.

1) Impact of batch size: From the experiments, we observe
that the accuracy of the attack is better for small batch sizes,
and when increasing the batch size, it reduces. This means
the sensor/image capturing devices that capture user data less
frequently or perform frequent model updates with smaller
batch sizes are at higher risk of privacy leakage. From the
observations, having larger batch sizes for training models is
better. However, the utility of data for larger batches and their
processing time also should be considered since the captured
data may be time-critical for highly accurate predictions with
low latency to maintain a satisfactory user experience.

2) Impact of training rounds: The number of model train-
ing rounds also can considerably affect the attack accuracy,
as observed from Figure 3. Here, the accuracy is high when
the target model has a higher number of training epochs.
This signifies the nature of data fitting; the more trained the
data to the model, the more leakage is possible. Therefore,
images captured by metaverse devices using FL/ML can use
lesser training epochs. Still, it will degrade the overall model
accuracies, and models may not get the total learning capacity
from the captured image samples.

3) Impact of data augmentation: The disadvantage is on the
side of the attacker when they do not possess exact samples
of the target user’s data, as observed from the augmentation
percentages in the experiments. The attack success rate will
drop when more augmented data is present in the attacker.
However, there is still a reasonable attack capability for
smaller batch sizes, even when augmentation is 100%.

Model complexity can also play a role in attack accuracy.
Figure 3d and 3e show deviations in attack accuracy, where
more complex models have higher average attack accuracies.

D. Reconstruction Attack

The next step in the attack is to launch the reconstruction of
a target model. The reconstruction is done via improved Deep
Leakage from Gradients (iDLG) attack [45] for reconstructing
images with different batch sizes from 1 to 10. We selected
this range since the membership inference is highly likely
with a lesser batch size. As the target model, we perform
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Fig. 3: The accuracy of the attack vs. the local batch sizes with (a), (b), (c) different augmentation percentages of the target test
set, (d), (e) different model architectures of NN and variation of required iterations for reconstruction attack with the number
of NN models. (f) Required average attack rounds for reconstruction for varying target model training batch sizes.

our experiments with the LeNet-5 model. Figure 4 provides
an example reconstruction made with a trained target model
having a batch size of 3 with one epoch for the target model.
The average number of rounds taken to reconstruct the images
via gradients of the target model is shown in Figure 3f.
Here, we observe that the reconstruction of larger batch sizes
consumes more time than smaller batches. In an FL system, if
the attacker gains access to all the models but does not have
information on which model the target data is, they will have
to reconstruct all the models. It may be seemingly impossible
if millions of models are available. However, a lookup for the
potential target can be made via the membership inference,
which will significantly reduce the time the attacker takes to
recover the facial emotion data.

Ground truth iter=0 iter=10 iter=20  With filter

Fig. 4: Example reconstructed dataset of face images for a
batch size of 3, with a median filter to reduce noise.

E. Possible Attack Mitigation Techniques

The solutions we proposed in Section IV can be used
to mitigate the privacy attack. Perturbation techniques such

as differential privacy on the edge and fog [34] can be
implemented to reduce the attack accuracy with noisy inputs.
To avoid eavesdropping by a malicious entity to track model
updates, lightweight encryption [17] can be applied. Privacy
should be evaluated in the design phase [29], [30] of these
algorithms, and the trade-offs between utility and privacy can
be considered when implementing privacy-preserving mech-
anisms. Existing standardizations such as GDPR, free flow
of non-personal data, and acceptable threshold privacy levels
should also be considered when designing the algorithms. XAI
also has the possibility to detect any abnormalities in the fitted
model, as well as provide explanations on the top features used
to train the models.

VI. CONCLUSION

In this paper, we evaluated privacy considerations for the
metaverse. The metaverse can combine many technologies
which are already existing, yet they should be improved
further to achieve privacy expectations with growing threats
and vulnerabilities. We show privacy issues can exist and are
emerging through new technologies, internal service providers,
and external attackers. For example, we introduced a novel
metaverse-related potential privacy attack where adversaries
can harness users’ emotional status by attacking the ML model
and recovering the image data from VR sensors. We showed
that overfitting, batch size variations and original user data
availability can change the attack accuracy in inferring the
users’ membership, which can be used against the attack.
The potential solutions with already existing technologies and
tools are also proposed in this paper to address privacy issues.



However, some privacy solutions will be more applicable
than others when considering their practicality, maturity, and
availability of future related work.
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