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Abstract—Federated Learning (FL) is an emerging privacy-
preserved distributed Machine Learning (ML) technique where
multiple clients can contribute to training an ML model without
sharing private data. Even though FL offers a certain level of
privacy by design, recent works show that FL is vulnerable to
numerous privacy attacks. One of the key features of FL is the
continuous training of FL models over many cycles through
time. Observing changes in FL models over time can lead to
inferring information on changes to private and sensitive data
used in the FL process. However, this potential leakage of private
information is not yet investigated significantly. Therefore, this
paper introduces a new form of inference-based privacy attacks
called FL Time Inference Attacks (FL-TIA). These attacks can
reveal private time-related properties such as the presence or
absence of a sensitive feature over time and if it is periodical.
We consider two forms of such FL-TIA: i.e. identifying changes
in membership of target data records over training rounds and
detecting significant events in clients over time by observing
differences in FL models. We use the network Intrusion Detection
System (IDS) as a use case to demonstrate the impact of our
attack. We propose a continuous updating attack model method
for membership variation detection by sustaining the accuracy
of the attack. Furthermore, we provide an efficient detection
method that can identify model changes using cosine similarity
metric and one-shot mapping on shadow model training.

Index Terms—Federated Learning, Inference Attacks, Privacy,
Intrusion Detection, Privacy Attack, Communication Networks

I. INTRODUCTION

The ever-increasing communication capabilities and new
modes of technologies for collecting data have already led
to the rapid growth of big data. This can be expected to
increase rapidly in the near future. In Beyond 5G (B5G)/6G,
there will be an expansion of automated services with zero-
touch networking and management. These future networks
and associated services will require to continuously improve
their Artificial Intelligence (AI) systems to provide adaptable
services over time for new changes in data. However, due to
rising data privacy concerns, the best option is to record and
process data locally without transmitting it to a third party [1].
Yet these locally trained ML models may suffer from issues
such as overfitting to local data and, thus, may lead to less
accurate results. Therefore, it may still require more accurate
ML predictions with support from third-party.

FL comes as a solution to improve the quality of AI systems
in a collaborative manner by allowing them to share ML
model updates instead with third parties, meanwhile keeping
the original data private. However, with collaborative model
updates shared from these end clients in the FL model training,

there is a possibility of leaking sensitive information on data.

A. Related Works

Many related works describe FL-based privacy attacks,
including membership inference, determining class representa-
tives, property inference on data, and model inversion attacks.
The survey in [2] classifies different privacy leakage scenarios
based on insiders, like malicious clients and servers, and
outsiders, like consumers and eavesdroppers. Recent works
identify different types of threats and attacks in FL. Such at-
tacks include reconstruction attacks, data and model poisoning,
backdoor attacks, and inference attacks [3].

Inference attacks are adopted in FL from general ML
attacks. They aim to reveal information on training data used to
train the models through exploiting the model parameters [3].
Several works focus on identifying specific properties of
clients. One such example is the work in [4], which proposes
source inference, a technique to identify the source that
added specific data for training the FL model. The authors
in [5] discuss another type of inference attack called category
inference, where an attacker attempts to determine the category
information of the data used by the clients. They use a multi-
train classifier inference model with an approximate model
update technique. The works [6], [7] use property inference for
identifying the first appearance of specific features in training
data; however, they may be applicable only for certain distinct
properties on the dataset and may not be applicable for two
data with the same property.

Authors in [8] attempt to identify information leaks through
membership inference in sequential FL, which is a form of FL
that only accounts for one model at a time. Authors in [9] use
shadow models for improving the accuracy of membership
inference attacks in general ML scenarios. Work in [6] uses
shadow models for property inference attacks in FL. However,
these works do not identify that attack models will loose
their accuracy over continuous FL iterations since they are
not able to infer on new data. These shadow models are
copies of the original ML algorithm. They are trained using
artificially generated dataset or noisy real data. A GAN-based
membership inference attack without shadow models for FL
is proposed in [10]. Using a GAN, an attacker can generate
any amount of artificial data samples. GAN consists of two
components, a discriminator and a generator. Representative
data is fed to the discriminator. The generator uses random
noise to generate new samples similar to the input dataset. In



our work, we present a combined approach of using GAN and
shadow models. The Fig. 1 provides an overview of the GAN
and shadow model training process and outlines their potential
benefits and weaknesses when applying them separately from
the attacker side.

Fig. 1: GAN data generation and shadow model training pro-
cess. Each technique has disadvantages for the attacker when
using the two techniques isolated in attack model training. Our
method combines both approaches for better attack accuracy.

The inference attacks are designed to exploit ML model
parameters. In FL, since FL is sharing model parameters with
third parties by design, there is a high possibility of being
subjected to an inference attack for clients participating in
FL training. However, existing types of inference attacks were
designed to reveal different properties such as membership,
source or any other property of the data only at a particular
snapshot in the FL lifecycle [4], [5], [10]. None of these works
consider or assess the severity of attacks with the variation
over the property time.

Therefore in this paper, we present a new type of inference
attack called FL-TIA/TIA to infer the changes that occur over
time in a scenario of IDS. We show the significance of privacy
leakage in FL systems with time inference. We provide a real-
world use case scenario of IDS to showcase the practicality
and severity of the attack. We can identify time periods of
data generation as a critical property that can impact the
privacy of individuals and organisations in many domains.
This may include examples such as network operations, IoT,
transportation, business, and healthcare industries. The time
periods of performing actions and occurrence of events can
be highly confidential information in many applications. For
example, considering emergency situations [11] in healthcare,
the time interval that an emergency has occurred can be used
as potential data to track an anonymized individual when
correlated with public or other de-anonymized data.

Furthermore, revealing time through IoT devices will cause
information leakages, such as tracking user habits and identify-
ing device usage and idle times. It may also leak information
about available device resources and processing limitations.

Then, adversaries can use this information to their advantage.
Examples include launching a physical assault on data owners
or selling private information for purposes like personalized
advertising. However, we identified that no considerable dis-
cussion on time inference attacks is currently performed for
FL, which can periodically send information to untrusted third
parties over public channels. Therefore, it makes FL more
vulnerable to the mentioned and other potential privacy attacks
with leakage of time information unless this threat is carefully
considered beforehand.

B. Our Contributions

We consider two scenarios of FL-TIA in our IDS use case
to infer the training round/iteration and to recover IDS attack
events. by observing major changes in models and inferring
its direction over training rounds. The timestamp of these
training rounds can be recorded meanwhile capturing the local
models. Thus, with the information about the actual rounds
and timestamps, the attacker can reveal the time intervals. We
perform the attacks for the use case of FL-based IDS, where
an organisation can collaboratively train their local IDS ML
models with third parties or an FL-based IDS implemented at
different nodes or locations of the same organisation. TIA can
result in multiple adverse effects for the victim IDS, including
1) exposure of the identity of the organisation and the period
when a specific attack event has occurred from membership
variation in anonymised and timestamp removed data records,
2) revealing the severity of the attack events even without
any data records, 3) identification of vulnerabilities and peak
vulnerability periods in the security system of the organisation
or a specific node with IDS. In the paper, we further summarise
our contributions as follows:

• Present a new variation of inference attacks on FL, called
time inference, for a use case of IDS.

• Propose a mechanism that combines GAN and shadow
models to determine and maintain the accuracy of mem-
bership variation over time.

• Design a novel approach for detecting the occurrence and
change of network attack events over time by continuous
observation of target model similarity metric.

• Discuss potential defence techniques for TIAs and limi-
tations of these defences.

C. Outline

The rest of this paper is arranged as follows. Section II
presents an overview of the system model of our attack
scenario. Section III describes details of the proposing time
inference attacks. The experiments conducted are discussed in
Section IV. In Section V, we present a discussion on potential
defence techniques. Finally, we conclude the paper with a
summary and future directions in Section VI.

II. SYSTEM MODEL

We propose two types of TIA to identify 1) membership
variation and 2) major events over time. They are launched



against a network-related use case scenario of IDS, where
multiple organisations jointly compute FL models for intrusion
detection. Fig. 2 provides an overview of the use case.

Fig. 2: IDS collaborative FL among multiple organisations

Here, TIA can be done by any party who can observe
the variation of FL models over time: 1) in the membership
variation detection attack, a malicious client, and 2) for the
significant events detection, an eavesdropper who compro-
mises the communication channel. Similar to [9], [10], our
work considers that the attacker can obtain model parameters.
Then, they can observe how the model parameters change
over time to infer the properties of the original dataset. For
the attacks, the attacker may also possess a small sample
of the original training data. The attacker can obtain such
data from compromised clients. In a real-world scenario, it
may be possible to get data by attacking a few low-end IoT
devices [12] or an IDS with a weaker security mechanism.

III. PROPOSED TIME INFERENCE ATTACKS

This section introduces our approaches for launching the
FL-TIA in multiple steps, including algorithms of the attack.

A. Exploiting intrusion detection

The attacks such as DDoS can last between a few seconds
to hours or even days [13]. Long-lasting attacks can result
in significant amounts of data that can be collected by IDS
model training. Also, shorter bursts of attacks may lead to
periodic increases in attack data used to train IDS. In our
use case, we consider IDS trained through FL by several
organisations, where the TIA adversary needs to identify when
these attacks occur. Revealing such information can lead to
identifying potential vulnerability periods, which the attacker
can use against the organisation to launch a security or privacy
attack since the protection system is busy and vulnerable. Also,
attack duration can leak organisation’s internal information,
like how quickly the organisation responds to the attacks.

B. Attack Type 1: Membership Variation over Time

The interval when a given data record is utilised in FL model
training is an unintended property that can be leaked in FL
training iterations. Suppose an attacker obtains anonymised
data records on the IDS, which is used as the training data

of a certain organisation. The attacker wants to determine
the owner of this data. This can be done using a mem-
bership inference [10] attack. However, even after detecting
the owner’s identity, knowing the exact time periods when
the attack occurred is more valuable to the attacker. For
example, with membership variation detection, the attacker can
specifically identify when the members have been attacked
more frequently. If attacks occur in a periodic pattern, the
TIA attacker can predict future network attack possibilities of
the target. Furthermore, they can identify the IDS FL model’s
vulnerabilities for any specific attack type. The benefit of this
method is the attacker can pinpoint the exact occurrence time
of a critical data record of interest in the victim organisation.
Fig. 3 gives an overview of the steps of our proposed attack.

1) Attack model with GAN generated data and shadow
model: The first step of the attacker is to enter to target
model training process as a malicious client. In IDS systems,
they may perform this by hijacking some nodes or injecting
malicious updates over a compromised channel. Here, the
attackers will need some data to train the malicious local
models. For this, they can generate a representative dataset
Dgen using GAN [10]. For a target model raining round t,
the attacker injects Dt

gen ⊂ Dgen to the target model and
obtains Dtarget with class labels and membership state s. The
attacker also trains a set of shadow models [9], with a similar
architecture to the target models, using dataset DI

gen ⊂ Dgen

and obtain Dshadow with class labels and membership state
as well. Then, the predictions for test portions of Dtarget and
Dshadow from both the target model and shadow models can
be obtained. These predictions, along with the membership
state s of both datasets, are fed into the training of another
model named the attack model.

2) Continuously progressing attack model for training
rounds: When using the same attack model trained for a
previous round for predicting membership states, we observe
that the accuracy of the attack model is gradually reduced.
None of the previous works of the current state-of-the-art,
such as [9], [10], considered the factor of accuracy loss over
iterations. The attack model trained in FL training round t may
not be as accurate in training round t+1 since new data may
get added each round. To overcome this issue, we introduce
the idea of the continuous progression of the attack model.

After getting the initial version of the attack model, the
attacker uses Algorithm 1 to get the attack model Ωt+1 at next
round t + 1. Here, they get a representative sample Dt+1

gen ⊂
Dgen for this new round t + 1. Then, the attacker combines
Dt+1

gen to the target model training dataset Dt
gen in the previous

round. This combined dataset is used in the function POISON(),
where the dataset is added to the FL training via the malicious
nodes. It will return Dt+1

target. This output is combined with
the initially trained shadow model dataset Dshadow. Since the
attacker needs to perform shadow model training only once,
the process is lightweight. It is then used to train the updated
attack model Ωt+1. Following this for q training rounds, a set
of attack models is obtained {Ω1,Ω2, ...,Ωq}.



(a) Poisons the target model by
GAN data via malicious clients.

(b) Trains shadow models and uses data from
both to train attack model.

(c) Records timestamps and gets changes
in membership probability.

Fig. 3: The proposed FL-TIA steps involve three phases: (a) data generation, (b) attack model training, and (c) inference.

Algorithm 1 Progressing attack model for q training rounds

1: Input: In a new round t+ 1, Dt+1
gen ; Dt+1

gen ⊂ Dgen

2: Output: {Ω1,Ω2, ...,Ωq} : A set of attack models for q
training rounds

3: Let A = {}
4: for q rounds, in each training round do
5: POISON() ← Input: Dt+1

gen ∪Dt
gen; Return: Dt+1

target

6: Dt+1
attack ← (Dt+1

target ∪Dshadow)

7: ATTACK TRAIN() ← Input: Dt+1
attack; Return: Ωt+1

8: A = A ∪ Ωt+1

9: end for
10: Return A = {Ω1,Ω2, ...,Ωq}

3) FL-TIA using the trained attack model: The updated
attack models in each training round are used to infer the
time interval when a new data element is added to the FL
model training process. In between two training rounds t and
t + k, we have two attack models Ωt and Ωt+k respectively.
For a given data record r, the membership state probability
can be obtained from the attack model Ωt as pt and Ωt+k

as pt+k. For a threshold probability of PK , if pt < PK and
pt+k > PK , an attacker can identify that the data record r has
been entered into the FL model training during that period.

C. Attack Type 2: Detection of Significant Events over Time

Membership changes over time can hint to an attacker
about specific changes happening to the original dataset. For
example, suppose in the IDS system, the attacker has captured
some data records of a Denial of Service (DoS) attack incident.
Membership changing from non-member to a member in all
these data at the same time interval can provide evidence of
an ongoing attack on the victim IDS. However, detecting such
changes can be difficult unless the attacker possesses enough
data records of the same time interval. Therefore, we propose
another method to identify such critical attack events over time
and their recovery periods by observing overall trend changes.

1) Distance metric using cosine similarity: Suppose the
attacker has two such target local models lt and lt+k at rounds
t and t+k. The IDS should update these local models based on
the latest data collected in their corresponding time windows.
Similar to the attack type 1, here, the attacker can also generate

a sample of GAN data Dgen and send this data through both
models to get the model predictions as lt(Dgen) = yt and
lt+k(Dgen) = yt+k, where yt and yt+k are the output vectors
obtained by the two models. The cosine similarity can be
calculated as follows:

Sc(y
t, yt+k) := cos(θ) =

yt.yt+k

||yt||||yt+k||
(1)

Higher values of Sc(y
t, yt+k) imply the distance between

the models is high, which can signify the nature of data
used to train the local models in the two-time windows have
significantly different properties. Thus, the TIA attacker can
infer if a major incident in the IDS has occurred.

2) Reference shadow models for inferring attack direction:
However, comparing only the two target models does not pro-
vide information on the attack direction. Determining which
of the target models at t or t+ k has a higher ratio of attack
data can show the direction of the attack. The attacker can
infer that an attack event has occurred if new attack data is
accumulating between t and t+ k. If the ratio has decreased,
a defence mechanism is launched. To obtain the direction, we
use the shadow models as the intermediary reference in the
cosine similarity. A shadow model ϕi is trained with a fixed
ratio of ai : bi of attack:benign data. Previously generated
GAN dataset Dgen is sent through ϕi as ϕi(Dgen) = yi to get
its prediction yi. If cosine similarity Sc(y

t, yi) > Sc(y
t+k, yi),

the attacker can infer that lt has closer value of attack:benign
ratio to ai : bi than the other target model lt+k. Finding the
exact ratio of lt then can be a search problem, where the
attacker has to determine the shadow model ratio ai : bi that
results in maximum cosine similarity values between lt and ϕi.
For this, the attacker can use an algorithm like binary search,
where they have to train a shadow model at each step.

3) Detection of attack events: Training multiple shadow
models for each target model could be computationally expen-
sive for the attacker, especially if the number of local clients
and local models is high. As an alternative, we develop a one-
shot mapping where attack:benign data are compared using
a fixed number of shadow models. Here, we train two types
of shadow models: static and dynamic models. A small set of
static models ϕs = {ϕs1, ϕs2..., ϕsk} were used to train with



known fixed ratios attack data vs. benign GAN data. Another
set of dynamic shadow models ϕd = {ϕd1, ϕd2..., ϕdn} are
trained using different other ratios of attack:benign GAN data.
The cosine similarities were taken between each combination
of pairs in ϕs and ϕd. This results in a mapping of coordinates
between attack:benign ratio vs. cosine similarity for ϕs. These
coordinates can be fit to functions ψs = {ψs1, ψs2, ..., ψsk},
for each static shadow model in ϕs. When a target model lt is
captured, the attacker can identify cosine similarity with each
static shadow model ϕs and get the inverse function ψ−1

s to
retrieve the corresponding attack:benign ratio for the target
model. The summary of the attack is shown in Algorithm 2.

Algorithm 2 Predicting events attack with shadow mapping

1: Input: Static shadow models ϕs = {ϕs1, ϕs2, ..., ϕsk},
dynamic shadow models ψd = {ψd1, ψd1, ..., ψdn}, sample
GAN dataset Dgen, local target models lt and lt+k

2: Output: Change in attack:benign data ratio in target
models (∆a : ∆b)

3: function SHADOW MAPPING()
4: Let ψs = {}
5: for each ϕi in ϕs do
6: Let M = {}
7: for each ϕj in ϕd do
8: yi = ϕi(Dgen); yj = ϕj(Dgen)
9: M =M ∪ Sc(yi, yj)

10: end for
11: ψi=FIT FUNCTION(M)
12: ψs = ψs ∪ ψi

13: end for
14: Return: ψs

15: end function
16: Let yt = lt(Dgen); yt+k = lt+k(Dgen)
17: Let θt = Sc(yt, ϕi); θt+k = Sc(yt+k, ϕi);ϕi ∈ ϕs
18: ψs =SHADOW MAPPING()
19: (∆a : ∆b) = ψ−1

s (θt+k)− ψ−1
s (θt)

20: Return: (∆a : ∆b)

IV. EXPERIMENTS

A. Dataset and Experimental Setup

For our experiments, we used two datasets: NSL-KDD and
the more recent 5G-Network Intrusion Detection Dataset (5G-
NIDD) [14]. NSL-KDD is a popular benchmark dataset for
IDS, which consists of 125,973 data records providing details
on network traffic based on various network attack scenarios.
In NSL-KDD, we pick the two most frequent types of traffic
for our experiments, normal and DoS attacks. The 5G-NIDD
dataset consists of 1,215,890 data records with 9 different
types of network traffic, 8 representing different attack sce-
narios. For this dataset, we consider all these 9 network traffic
types as output classes in the FL models. In the experiments,
we only select small subsets of the original data records
that maintain the original distribution of the datasets. All the
experiments were implemented using Keras and Tensorflow

Federated (TFF) framework. We set the configurations in TFF
for both clients and the aggregator to automatically train the
models with Stochastic Gradient Descent (SGD) optimization.
For the datasets, we used 70% training vs. 30% test set. The
training set was equally split among the clients. To run the
experiments, we use a computing instance with Intel Xeon
2.20 GHz CPU, 26GB RAM, and an NVIDIA Tesla T4 GPU.
We considered the target model a sequential Neural Network
(NN) with a hidden layer of 512 dense units followed by a
dropout layer with a 0.2 dropout rate. We use the similar NN
model architectures for both datasets with except for input and
output layers, which differ based on the shapes of input and
output classes. We trained the target models with 50 clients
and 20 initial rounds for each.

B. Membership Variation Detection over Time

As the next step, we trained a GAN to generate repre-
sentative data for the attacker. We used 1,000 samples from
the original datasets to train the generator and discriminator
models. The generated results show a high similarity in the
numeric features of actual vs. GAN data, as shown in Fig. 4
for NSL-KDD.

(a) Mean (b) Standard deviation

Fig. 4: GAN model training metrics for NSL-KDD dataset.

To create the attack model, we poison the target models
using the generated labelled data with 20,000 records. We
also used 10,000 GAN data records over 20 rounds to train
five shadow models similar in architecture to the target model.
The shadow models produce overall 50,000 shadow training
outputs. Both target model and shadow model outputs are used
to train the attack models, which are Multilayer Perceptron
(MLP) classifiers with two hidden layers of 64 and 16 units,
respectively. Results obtained for NSL-KDD in Table I show
our combined approach of using both GAN and shadow mod-
els produces the best attack models for membership variation
detection TIA.

TABLE I: Metrics for TIA attack model at round 21.

Metric Only shadow
models

Only GAN-based
poisoning

Both GAN and
shadow models

Test accuracy 66.66% 69.85% 79.68%
Precision 54.82% 58.18% 64.97%
Recall 64.16% 70.25% 88.07%
F1 59.12% 63.65% 74.78%



(a) Accuracy (NSL-KDD) (b) Recall (NSL-KDD) (c) F1 (NSL-KDD) (d) TIA success rate (NSL-
KDD)

(e) Accuracy (5G-NIDD) (f) Recall (5G-NIDD) (g) F1 (h) TIA success rate (5G-
NIDD)

Fig. 5: The accuracy, recall, F1 of attack models, and FL-TIA success rate with and without continuous updates.

1) Maintaining Accuracy of Attack Models over FL Model
Training Rounds: In our attack, we introduce the approach
of continuous progress of the attack model to maintain its
accuracy. To compare our approach with the existing works,
we continue to train attack models for further 10 FL rounds
from Algorithm 1 using 20,000 GAN data records for NSL-
KDD and 10,000 records for 5G-NIDD datasets, respectively,
for each round. We also evaluate the metrics over the FL
rounds with the attack model without further training, as
presented in related work [10]. We tested the accuracy of
the attack models with 5,000 poisoned data records for both
datasets. From the results in Fig. 5 we observe that the attack
model continuously updated with our approach maintains the
initial accuracy, recall, and F1 metrics in Fig. 5 while the
metrics for the attack model without any updates are reducing
over the rounds.

2) Time Inference Attack via Round Prediction: To evaluate
the FL-TIA for membership variation detection, we designed
an experiment summarised in the Algorithm 3. Here for each
round t, we get a sample GAN dataset Dt

gen where initial
membership state s = 0 for all elements in Dt

gen. We send
this data through the continuously progressing attack model,
Ωt, for round t. The membership probability p0 for the round
t in Dt

gen ← (ytpri , y
t
geni

) can be obtained as:

p0 =

∑|Dt
gen|

i=1 (Ωt((ytpri , y
t
geni

)) = 0)

|Dt
gen|

(2)

where yupri is the predicted value, yugeni
is the actual value of

the ith data record in Dt
gen and s is the membership state of

either in or out. Then we poison the FL model with the same
dataset over another round t+k such that s = 1 for all values.

For each round, we use sample GAN datasets with 5,000
records as testing data across two rounds to evaluate the FL-

Algorithm 3 Experimenting FL-TIA through round prediction

1: Input: Representative dataset Dt
gen ← (ytpr, y

t
gen), attack

model Ωt for round t, attack model Ωt+k for round t+ k
2: Output: The Attack Success Rate ASR
3: Membership state s = 0∀ elements in Dt

gen

4: Get p0 =

∑|Dt
gen|

i=1 (Ωt((ytpri , y
t
geni

)) = 0)

|Dt
gen|

5: At round t + k; POISON()← Input: Dt
gen; Return: Dt+k

gen

where membership state s = 1∀ elements in Dv1

6: Get p1 =

∑|Dt+k
gen |

i=1 (Ωt+k((yt+k
pri , y

t+k
geni

)) = 1)

|Dt+k
gen |

7: Return ASR =
p1 + p0

2

TIA. We get the round predictions for the interval between
each new attack model and the attack model in FL round 20,
based on Algorithm 3. From this, we obtain the Attack Suc-
cess Rate (ASR) for both with and without the continuously
updated attack models. Here, we defined ASR as an average
value for a success rate of the correct membership predictions
between the two rounds. The results are in Fig. 5d and Fig. 5h
They show FL-TIA has a significantly higher success rate with
our approach of using continuously updating attack models.

C. DoS attack Events Time Inference in IDS using Cosine
Similarity and Shadow Model Mapping

For detecting DoS attacks, we follow the Algorithm 2 to
create a shadow model mapping. We used 3 static shadow
models s1, s2, s3 with respectively 1:99, 50:50, and 99:1 of
attack:benign data ratio. The cosine similarity of each shadow
model is compared with a set of 15 dynamic shadow models
with varying attack data ratios from 0% to 100% of GAN-
generated DoS attack data derived from NSL-KDD dataset.



We run the experiment for two scenarios of 10,000 and 1,000
overall data for the shadow models. Then the obtained values
were averaged and fit a Gaussian distribution curve for each
static shadow model as shown in Fig. 6a.

(a) Shadow models map (b) Actual vs. predicted data ratio

Fig. 6: Shadow models map and predicted cosine similarities
for NSL-KDD.

We simulate two example target models, l1 and l2, which
are two local IDS FL model updates with actual attack data
percentages of 20% and 80%, respectively. By comparing
cosine similarity of l1 with the three static shadow models,
we observe that cosine similarity points for l1 as θ(s1, l1) >
θ(s2, l1) > θ(s3, l1) and θ(s3, l2) > θ(s2, l2) > θ(s1, l2) for
l2. From this, we can infer a reversal of the trend in training
data. This signals that a DoS attack occurred between l1 and
l2. Also, we derive the x value of l1 and l2 by obtaining
the average value of the three points in each l1 and l2 that
intersects the x axis. We see the inferred attack data ratio is
very close to the actual ratio in Fig. 6a.

Furthermore, we perform another experiment by obtaining
multiple target models with different NSL-KDD attack data
ratios, ranging from 1% to 99%. It is shown in Fig. 6b.
Three scenarios were considered with 1,000, 5,000, and 10,000
total datasets for the target models. We observe the predicted
values are closer to the actual data ratios in the target models.
Their Mean Squared Error (MSE) values are obtained as
0.0060, 0.0204, and 0.0294 for 1,000, 5,000, and 10,000,
respectively. Here, we can conclude that lower window sizes
of datasets increase the risk of the attack. Therefore, high
vulnerability can be expected for IDS running in resource-
limited IoT environments. Our method can also clearly identify
the extremes where either high or low attack data is present.

V. DISCUSSION

A. Defence Techniques
The TIA is done by the attack models used for the member-

ship inference in FL training rounds. Therefore, if the attack
models have lesser accuracy, the ASR of the round prediction
will be reduced. Adding perturbations to the training data,
model updates via Differential Privacy (DP) [15], [16] may
provide resilience against the TIA. We tested this by adding
DP with varying privacy budget ϵ. The FL model accuracy
and average ASR at round 20 are shown in Table II.

Adding noise via DP has reduced ASR to 49.96% for NSL-
KDD when ϵ = 0.5, providing a better privacy guarantee.

TABLE II: DP against Membership Variation Detection.

DP status No DP ϵ = 4.0 ϵ = 2.0 ϵ = 1.0 ϵ = 0.5
FL Acc 95.72% 95.15% 94.64% 94.03% 84.75%
ASR 67.48% 67.24% 58.69% 57.08% 49.96%

However, it has reduced the model accuracy by about 10%
as well. Therefore, it has a trade-off over accuracy when
using DP-based defence. Considering defence against event
prediction, other approaches, such as secure aggregation, can
be used since it masks and protects individual model updates
from eavesdroppers, which we extend as a future direction.

B. Comparison with Related Works

We compared the accuracy metrics of our attack model in
membership variation with the study in [10], as shown in
Fig. 5. Results show our attack with continuous updates has
outperformed and maintained the accuracy of the attack model
over time. Furthermore, to the best of our knowledge, none of
the state-of-the-art works on FL consider TIA based on the
significant event detection of IDS we present in the second
attack. We also compare our findings with the other related
inference attack types in Table III.

TABLE III: Summary contribution of our work.

Characteristics Ref
[4]

Ref
[8]

Ref
[9]

Ref
[10]

Ref
[5]

Our
work

Time-based inference on FL-based IDS
(Novel privacy attacks on FL)

- - - - - ✓

GAN to generate datasets for inference - - - ✓ - ✓
Training shadow models for more data - ✓ - ✓ - ✓
Continuously evolving attack model - - - - - ✓
Experiment FL attack change over time - ✓ - - ✓ ✓
Defence techniques and limitations ✓ ✓ ✓ - ✓ ✓

VI. CONCLUSION

In this paper, we propose two time-based privacy attacks
on FL to detect membership variation and to identify attack
events of an IDS use case. We introduce a continuous updating
attack model that has better accuracy of detecting membership
variation detection over the existing approaches that show
degradation in the performance through time. In event detec-
tion, we use the lightweight technique of cosine similarity to
infer the changes for new events. Our experimental results
demonstrate an event like a DoS attack occurrence in a target
organisation can easily be inferred with only local FL models
captured over time. We also show defences like DP may
result in FL model utility trade-off with privacy. Therefore,
we investigate multiparty computation-based techniques to
address this trade-off in future work.
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