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Abstract—An emergence of attention and regulations on con-

sumer privacy can be observed over the recent years with the
ubiquitous availability of IoT systems handling personal data.
Federated Learning (FL) arises as a privacy-preserved Machine
Learning (ML) technique where data can be kept private within
these devices without transmitting to third parties. Yet, many
privacy attacks against FL can still leak private and sensitive
information. Though solutions are currently available, they may
not fit into the scope of IoT devices and may lead to sub-
optimal results for the FL process. To balance these trade-offs, we
propose a consumer-first approach to privacy protection where
local privacy preservation is done via a privacy recommendation
system. To evaluate the level of vulnerability of the local FL
models, we use existing attacks and propose a novel time-based
inference attack to test the resilience of FL models. Based on the
vulnerability assessment, privacy recommendations are applied
to local FL models based on a new gradient-split mechanism
that adds a perturbation mask to the updates. Our experiments
demonstrate the attacks can be mitigated effectively via the
proposed mechanisms, with enhanced privacy and minimum
compromise to the FL model utility.

Index Terms—Federated Learning, Privacy, Inference, Defence
Techniques, Privacy Recommender, Communication Networks

I. INTRODUCTION

With the increased demand for IoT-based consumer devices
and the development of rapid communication of these devices
over 5G and beyond networks, the exponential growth of big
data can be observed in recent years. However, it also creates
a critical potential for the leakage of user privacy if data is
directly sent to a third party. As a technique to overcome
this, FL has emerged over recent years to facilitate distributed
ML while preserving privacy. In consumer devices, FL allows
training ML models within the device from local user data
without transmitting data to a third party.

However, recent research on FL-based attacks [1]–[3] show
it is possible to infer end-user data from the shared ML mod-
els, which can still cause leakages in privacy. These privacy
leakages occur when forwarding the local model parameters
to the aggregator. A malicious aggregator or an eavesdropper
can inspect these forwarded model parameters. Then, they
can perform privacy attacks from the captured parameters.
Thus, this paper discusses two key privacy leakages in FL:
membership inference attacks and data reconstruction via deep
leakage from gradient attacks. Membership inference attacks
aim to infer if the target model is trained on a particular data
record the attacker has already captured. As a novel contribu-
tion, we extend membership inference attacks by introducing
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a new concept when performed continuously over multiple FL
rounds, and we call them Federated Learning Time Inference
Attacks (FL-TIA). Unlike the original information intended in
membership inference or data reconstruction, FL-TIA aims to
identify changes in the dataset over time, such as inferring
significant events in the training data over time. In the ex-
periments, we also launch the other attack, deep leakage, that
intends to recover the original client datasets.

To illustrate the impact of the attacks in a real-world
scenario, we select the use case of Virtual Reality (VR)
headsets-based services in the metaverse. The metaverse is a
virtual world where users can interact in real time with multi-
dimensional data, creating a realistic perception. VR headsets
play a crucial role as the key consumer IoT device, where they
capture private and sensitive information such as user motion,
facial expressions, and depth information. Metaverse service
providers can provide FL-based services for VR headsets,
which optimise the recognition and sensing capabilities of the
device via FL models.

Privacy attacks can affect client-oriented services like facial
expression recognition and device-based background intelli-
gence services, such as network Intrusion Detection Systems
(IDS). For example, suppose an attacker launches a deep leak-
age attack to recover the facial expression data of VR headset
consumers. Then, they can reveal the user’s identity through
FL model updates. Furthermore, the attackers can identify
user behaviour patterns upon inspection of changes in facial
expressions. When considering IDS background services, our
membership variation attack FL-TIA can be performed to iden-
tify the period when certain events, such as attacks, occurred
in the device. Revealing such time-related information can let
the attacker assess the security vulnerabilities of the device,
which they can exploit to gain access to the client device at
more vulnerable periods in the network.

Adversarial ML techniques can be applied to provide re-
silience against such attack scenarios. Here, defences are based
on mitigating factors like overfitting that can also lead to
privacy attacks. One of the strategies to provide defence is
through perturbation. This perturbation can be done during
model training, where the original model is added with a
controlled noise level. However, another problem occurs since
the quantities of noise cannot be set as constants for each
individual in the case of FL since each dataset can be dif-
ferent. Furthermore, a third party cannot inspect the dataset’s
properties, which would violate the key privacy idea in FL.
Therefore, consumers who use FL-based services choose to
either use sub-optimal privacy preservation mechanisms or risk
their privacy by allowing third parties access to data properties.
To overcome this issue, we propose a novel client-based local
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defence framework. It provides recommendations on the levels
of privacy mechanisms on FL-based services in IoT devices.

Our contributions of this paper as follows:
• Introduce novel inference attack types through time and

launch data reconstruction attacks for a use case of VR-
based IoT consumer headsets.

• Propose a novel defence technique resilient against in-
ference attacks and data reconstruction based on splitting
the gradients and adding a random noise-based mask.

• Propose a new recommendation framework for privacy
updates based on testing the resilience of the FL models
via launching privacy attacks against it.

• Experimentally validate the significance and impact of the
proposed approach and compare it with existing privacy
preservation techniques.

The rest of the paper is arranged as follows. Section II pro-
vides existing related studies. Section III presents an overview
of our system model. Details on the proposed attacks are
presented in Section IV, and defence techniques are presented
in Section V. Section VI discusses the experiments performed.
In VII, we discuss the impact of the attacks, limitations, and
potential future work. The paper concludes in Section VIII.

II. RELATED WORKS

A. Federated Learning for Recommender Systems

As FL can provide privacy-preserved ML capabilities for
consumer devices, we observe a surge of applications in FL.
They include use cases in multi-access edge computing, robot
networking, consumer and industrial engineering applications,
and healthcare [4]. Recommender systems-based applications
can also get support from FL to improve their recommendation
results while maintaining privacy. FL-driven recommender
systems can address the issue of data silo issue where multiple
parties are not willing to share data to train a common
recommender system directly [5]. This can be helpful in
launching applications like VR-based multisensory platforms,
where multiple third-party services can collectively share their
FL models and obtain better recommendations for users who
use these services. The work in [6] demonstrates an online
recommendation platform based on FL for multiple consumer-
based applications such as product recommendations, online
advertising, and content recommendations. However, recent
works identify numerous types of threats for FL.

B. Privacy Attacks on FL

Many related works describe FL-based privacy attacks,
including membership inference, determining class representa-
tives, property inference on data, and model inversion attacks.
The survey in [7] classifies different privacy leakage scenarios
based on insiders, like malicious clients and servers, and
outsiders, like consumers and eavesdroppers.

In addition, several new types of inference attacks are
investigated in the research literature. The work in [1] proposes
source inference, a technique to distinguish the client that
added specific data for training the FL model. However, it
does not discuss identifying training rounds where the data was
entered. The authors in [2] discuss another type of inference
attack called category inference, where an attacker attempts

to determine the category information of the data used by the
clients. They use a multi-train classifier inference model with
an approximate model update technique. The work [8] uses
property inference to identify the first appearance of specific
features in training data; however, they may be applicable only
for particular properties on the dataset and not for two data
with the same property.

Authors in [9] use shadow models for improving the ac-
curacy of membership inference attacks in ML models. A
Generative Adversarial Network (GAN)-based membership
inference attack on FL is proposed in [3]. An attacker can
generate any amount of artificial data samples using a GAN
model. A GAN consists of two components: a discriminator
and a generator. Representative data is fed to the discriminator.
The generator uses noise to generate new samples similar to
the input dataset. Another type of privacy attack is called
a model inversion attack, where the attacker’s aim is to
reconstruct the original dataset from the FL model gradients.
Examples of such attacks include Deep Leakage from Gradi-
ents (DLG) [10] and improved Deep Leakage from Gradients
(iDLG) [11], where the attacker uses dummy gradients and
minimizes the loss of the gradients, meanwhile recovering the
original dataset during the process.

C. Defence Techniques

Several defence mechanisms have been introduced to com-
bat privacy leakage and attacks in FL. One common method
is to use Differential Privacy (DP) [12], where an artificial
noise can be added to the FL model at the client side before
aggregating. This method can provide quantifiable privacy
bounds for adding the noise, which provides a guarantee of
privacy. However, with higher privacy, the model utility gets
reduced due to increasing noise quantities added [12].

Another mechanism for defending against privacy leakage is
Multiparty Computation (MPC), where FL model updates are
split into secret shares among multiple clients distributed in the
network, and they jointly compute partial aggregations without
revealing individual model details [13]. This method can main-
tain the utility of the models since no noise is required to be
added. However, it may increase the communication overhead
among clients in the network [13]. It could be costly for IoT
devices such as VR, which require providing real-time virtual
experience with low latency. Homomorphic Encryption (HE) is
another privacy mechanism that can perform aggregations over
encrypted models [14]. However, ciphertext generated from
HE tends to require much larger storage, which also increases
the communication overhead [15].

When considering the existing privacy frameworks for FL,
in [16], the authors present a privacy framework for FL by
applying perturbation and dummy model updates from the
client side and multiparty computation from the server side.
They show the reduction of model accuracy with higher noise
levels. Work in [17] proposes a blockchain-based secure FL
framework for 5G networks. They use local DP and Gaussian
noise to mitigate membership inference attacks. However, with
the increase in privacy, the accuracy of the models also got
reduced due to DP-injected noise. Similarly, authors in [18]
design a blockchain and smart contract-based FL framework,
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Fig. 1: Overview of the FL Rec-Def framework
where only outsider attacks are mitigated and do not provide
resilience against adversarial insiders.

Therefore, we investigate a lightweight FL defence mecha-
nism that can maintain the model’s utility over iterations at no
extra bandwidth cost. The defence we provide can be imple-
mented on consumer IoT devices to provide recommendations
by integrating it into our novel privacy framework.

III. PROPOSED REC-DEF PRIVACY FRAMEWORK

Privacy is a major concern for consumer devices in the case
of IoT systems. The majority of present works focus on server-
side security and privacy of such systems. An example of IoT-
based DDoS defence is proposed in [19]. It provides resilience
against DDoS attacks for multi-layer IoT-DDoS and, therefore,
is suited for metaverse server-side applications. However, in
the case of consumer privacy, individuals are the most vulner-
able to privacy attacks. Therefore, we propose a consumer-first
type defence recommender framework named Rec-Def against
FL privacy attacks. It is placed on the client side, where clients
perform privacy updates based on the recommendations to the
FL models before forwarding them to a third-party server.
We use VR headsets as the use case of IoT devices in the
system. In practice, multiple VR devices may have different
underlying implementations on core components, yet they all
should support third-party services like apps and Software as
a Service (SaaS) interfacing. This framework is specifically
designed for such types of services where these third parties
are untrustworthy. Though multiple devices have different
configurations, they all can access the same framework via
a common Application Programming Interface (API) service.
Therefore, it is easier to scale the recommendation system to
support many VR device types.

The proposed framework consists of three main components
in the client: 1) the FL client training module, which primarily
works on training local models that are specific to either user-
based or utility-based services; 2) the attack module, which
performs resilience testing via launching privacy attacks on
the models; and 3) FL defence recommender module, that
recommends local FL model defence techniques to mitigate
the attack. Fig. 1 provides an overview of the framework.

The metaverse VR applications provide FL services, where
local training is performed with the models shared by the
aggregation server. We consider two types of ML services:
1) user-based services, such as facial recognition and motion
detection, and 2) utility-based services, including intrusion
detection and intelligent optimization of data. In this paper,

we consider one example service from each: facial emotion
recognition and intrusion detection.

The user’s generated data will be sent to the client database.
Each service can have its own local database. The third-party
service providers are the ones that the user has subscribed
to, and they act as the aggregators in FL. An aggregator will
forward a global model without accessing the original data.
Local data will be consumed by two models for local training
rounds. Then, these trained models are sent to the attack
module, which acts as a penetration testing module that tests
the resilience of the models against multiple types of attacks.
The attack module also has access to the real database to
verify the accuracy of the attacks. These attacks can be either
existing or newly identified. The FL model should be resilient
and continuously test for any privacy vulnerability against
both new and existing attack types. The defence recommender
server will securely send configurations that contain details
on launching new penetration attacks. The attack module can
perform them. The local defence recommender can evaluate
the attack performance and provide recommendations by ex-
ecuting a defence mechanism to improve the model privacy
based on user preference.

IV. PRIVACY ATTACKS FOR FL RESILIENCE TESTING

This section introduces the types of attacks we launch
to test model resilience in the defence framework. For this,
we use two types of attacks: 1) FL-TIA, which is a novel
type of attack we propose, based on inferring membership
inference variation over time, and 2) DLG attack, which is an
existing model inversion attack that reconstructs the original
dataset. The attacks were chosen specifically to illustrate
the impact of two main privacy attacks: inference and data
reconstruction. When considering the case of the possibility
of such attacks on VR-based applications, a recent study in
[20] shows consumer VR devices consist of many privacy
and security vulnerabilities that can grant attackers access.
Some of these consumer devices also do not have standard
security features like multi-factor authentication, which makes
them more vulnerable to attacks. These security and privacy
gaps can easily be exploited by adversaries. Therefore, these
attacks are designed to demonstrate and evaluate the scenarios
of testing the FL model’s resilience.

A. Attack Type 1: Membership Variation FL-TIA

The first attack we introduce is based on inferring on the
property time. With FL, one can assume the ability of a third
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party to identify the period a data value used in training is
mitigated by keeping data private. However, this proposed
attack can reveal the interval when data is utilized in FL model
training. For this, we use the change of membership inference
over FL rounds. Rather than only using existing attack types,
the primary objective of this novel attack against the defence
mechanism is to test the effectiveness of the defence against
new attacks and to demonstrate the defence can be effective
against similar future inference attack types.

Similar to [3], [9], our work considers that the attacker
can obtain model parameters. Then, they can observe how the
model parameters change over time to infer the properties of
the original dataset. The attacker may also possess a small
sample of the original training data for the attacks. The
attacker can obtain such data from compromised clients. In a
real-world scenario, it may be possible to get data by attacking
a few low-end IoT devices [21] or an IDS with a weaker
security mechanism. Furthermore, data may not necessarily be
the training data from real devices. Only a small representative
sample similar to input data is sufficient for generating more
data with GAN.

In a real-world scenario, the attacker can use multiple clients
to conceal the attack. In addition, an attacker can be a man-
in-the-middle eavesdropper who may track the model updates
or push their adversarial model. If the attacker is a malicious
aggregator, they can also follow and modify individual client
nodes on each weight update, which can further refine the FL-
TIA we propose. In the experiments, we consider the attacker
has direct access to the target model updates. Fig. 2 provides
an overview of the steps followed in our attack.

1) Attack model with GAN generated data and shadow
model: The first phases of the attack consist of poisoning
the target FL model with attacker-owned data and training
an attack model. Poisoning is the addition of GAN-generated
data while training the target model. The attack model is an
ML model that can classify the membership state of a certain
data record, whether that data was included in the training
dataset of the client FL model or not. For this, the attacker
needs a dataset to train the attack model. This is obtained by
the poisoned datasets since they know the membership state of
the poisoned data. This process is further described as follows.

With a small representative dataset from FL clients, an
attacker can generate any amount of attack input data Dgen

using GAN models [3]. The labels for this GAN input data can
be obtained by sending via the global model ft(.). A subset of
Dgen dataset named DTin

gen is used to poison and train the next
t round of the target model ft(.). The poisoned model is then
tested with another portion of the GAN dataset Dgen, which is
named DTout

gen . Here, out signifies the membership state where
this data is not included in the ft(.) training process. Using
the combined predictions from DTin

gen and DTout
gen , we then form

the dataset Dtarget. To improve the overall accuracy of the
attack, we combine the GAN dataset with the shadow model-
based technique from [9]. These shadow models have the same
architecture as the target ML model. We create m number
of shadow models ϕi(.). Each ϕi(.), is trained with datasets
DIin

gen, D
Iout
gen which are subsets of Dgen. The results of training

are aggregated as Dshadow.

The next objective of the attacker is to train attack model
Ωt(.) that can predict the membership states of a new data
record at FL round t. As the training data for the attack model,
we combine Dtarget and Dshadow and name as Dattack. Each
record of Dattack is in the form (ypr, ygen, s), where ypr de-
notes the predicted value after poisoning, ygen is the prediction
before poisoning and s as the membership state of the record.
For each class label, we train a separate attack model and
get the inference by considering all of their predictions. We
summarise all mentioned steps in Algorithm 1.

Algorithm 1 Create attack model for FL model at round t

1: Input: Dgen a GAN-generated dataset, ft(.) : target FL
model

2: Output: Ωt(.) : attack model for round t
3: function POISON()
4: Let [DTin

gen, D
Tout
gen ] ⊂ Dgen

5: for next training round t do
6: Train ft(DTin

gen);
7: end for
8: Test ft(DTout

gen )
9: Return Dtarget

10: end function
11: function SHADOW TRAIN()
12: Dshadow = {}
13: for m shadow models, in each shadow model ϕi do
14: Let [DIin

gen, D
Iout
gen ] ⊂ Dgen

15: Train ϕi(DIin
gen) and then Test ϕi(Diout

gen )
16: Dshadow ← Dshadow ∪Di

shadow

17: end for
18: Return Dshadow

19: end function
20: function ATTACK TRAIN()
21: Dattack ← (Dtarget ∪Dshadow)
22: for each input class j in Dattack do
23: Let Dj

attack ⊂ Dattack

24: Train Ωt
j(y

j
pr, y

j
gen, s); (y

j
pr, y

j
gen, s) ∈ D

j
attack

25: end for
26: Return Ωt ← {Ωt

1,Ω
t
2, ...,Ω

t
c}

27: end function

2) Continuously progressing attack model for training
rounds: The attack model trained in FL training round t may
not be as accurate in training round t+1 since new data may
get added each round. To overcome this issue, we introduce
the idea of the continuous progression of the attack model.

After getting the initial version of the attack model from the
Algorithm 1, we follow a similar approach to get the attack
models for each new round of FL target model training. We use
Algorithm 2 to get the attack model Ωt+1 at next round t+1.
Here, we get a representative sample Dt+1

gen for this new round
t + 1. Then, we combine Dt+1

gen to the target model training
dataset Dt

gen used in the previous round. This combined
dataset is used in the function POISON(), which will return
Dt+1

target. This output added to the previously trained shadow
model dataset Dshadow, represented as (Dt+1

target ∪Dshadow).
It is then used to train the updated attack model Ωt+1 through
the function ATTACK TRAIN(). This approach takes less time
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(a) Attacker poisons the target
model by adding GAN data via ma-
licious clients.

(b) Attacker gets target model predictions and trains
shadow models and uses data from both to train attack
model.

(c) Attacker records timestamps
and gets FL-TIA with a change
in membership probability.

Fig. 2: The proposed FL-TIA steps involve: (a) data generation phase, (b) attack model training phase, and (c) inference phase.

to train the new attack model since we are using the existing
shadow dataset and not training the shadow models again.
Following this for q training rounds, we get a set of attack
models {Ω1,Ω2, ...,Ωq} for each round.

Algorithm 2 Progressing attack model for q training rounds

1: Input: In a new round t+ 1, Dt+1
gen ; Dt+1

gen ⊂ Dgen

2: Output: {Ω1,Ω2, ...,Ωq} : A set of attack models for q
training rounds

3: Let A = {}
4: for q rounds, in each training round do
5: POISON() ← Input: Dt+1

gen ∪Dt
gen; Return: Dt+1

target

6: Dt+1
attack ← (Dt+1

target ∪Dshadow)

7: ATTACK TRAIN() ← Input: Dt+1
attack; Return: Ωt+1

8: A = A ∪ Ωt+1

9: end for
10: Return A = {Ω1,Ω2, ...,Ωq}

3) FL-TIA using the trained attack model: The updated
attack models in each training round are used to infer the
time interval when a new data element is added to the FL
model training process. The malicious entity can maintain a
timestamp for each FL model training round.

In between two training rounds t and t + k, we have two
attack models Ωt and Ωt+k respectively. For a given data
record r, the membership state probability can be obtained
from the attack model Ωt as pt and Ωt+k as pt+k. For a
threshold probability of PK , if pt < PK and pt+k > PK , an
attacker can identify that the data record r has been entered
into the FL model training in between the two rounds t and
t+k. With this approach, we present the concept of continuous
training of attack models in Algorithm 2, where the attacker
can update attack models over progressing training rounds.

B. Attack Type 2: Deep Leakage from Gradients

In this attack, the attacker aims to reconstruct the private
dataset used to train a model. This is done via an adver-
sarial model that attempts to match the original gradients
of the victim model [10]. We selected this since it is a
well-established attack that is often used for benchmarking
privacy mechanisms. Furthermore, data reconstruction attacks
can result in significant privacy impact directly on individual
data points rather than properties emerging from them, making
them more attractive for attackers. Therefore, being resilient
against this attack is important for our defence mechanism.

Let f(x;W ) be an FL model. An attacker randomly initial-
izes a set of gradients ∇W̃ , where the target model gradients
are ∇W . The loss of Lg between random and target model
gradients can be represented in the following equation:

Lg = ||∇W̃ −∇W ||2f (1)

With this, the attacker can update a random data x̃ that
attempts to reconstruct the original data x through gradient
descent for N iterations as:

x̃← x̃− α∇x̃Lg (2)

where α is the learning rate.
An update for DLG is presented as iDLG in [11], which

further enhances the original attack by first determining the
ground truth labels and adding them as a part of inputs for
faster convergence. The amount of data necessary to train FL
models will be limited when considering a single target VR
device at the edge. Therefore, these models may get overfitted
to the owner’s data. It is relatively easier to reconstruct smaller
datasets from the gradients [10], [11]. Therefore, if an attacker
obtains these models via eavesdropping or getting internal
access to VR headsets, it is highly likely to recover original
data from captured gradients. These devices may have poorer
privacy protections because of resource constraints, or the
communication channels may have insufficient security, which
makes it relatively simpler for an attacker to conduct an attack.

V. ATTACK MITIGATION THROUGH SPLIT-GRADIENT AND
PERTURBATION (SAP) TECHNIQUE

One of the main reasons for privacy attacks is the FL models
get overfitted to the data at a given time window. This leads
to inference or model inversion attacks if the attacker captures
model parameters, such as weights or gradients. Therefore, as
we discussed in Section II, an initial approach to mitigating
attacks would be to add a controllable noise to the original
model parameters through a technique such as DP. However,
DP causes degradation of model utility since noise can directly
impact model accuracy. Therefore, we propose a lightweight
mechanism named SAP to mitigate attacks by splitting the
model over time.

A. Process of SAP Mechanism

Suppose the gradients of the local model is ∇W , where
∇W = ∂L

∂W , which is a change of the loss function over-
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weights of the NN model. We split ∇W to two components
∇W<t>

1 and ∇W<t>
2 as follows:

∇W<t>
1 = 2

∂L<t>

∂W
+ i<t> (3)

∇W<t>
2 = −∂L<t>

∂W
− i<t> (4)

where i<t> is a randomly added noise value independent of
the gradients. At the start of time at t = t, we apply Stochastic
Gradient Descent (SGD) only for ∇W<t>

1 with learning rate
α.

W<t> = W<t−1> − α

(
2
∂L<t>

∂W
+ i<t>

)
(5)

When performing SGD to the next training round at t = t+1
onward, we append ∇W<t>

2 from the previous round.

∂L<t+1>

∂W
= 2

∂L<t+1>

∂W
+ i<t+1> +∇W<t>

2 (6)

= 2
∂L<t+1>

∂W
+ i<t+1> − ∂L<t>

∂W
− i<t> (7)

When applying SGD at t = t+ 1, we get,

W<t+1> = W<t> − α

(
2
∂L<t+1>

∂W
+ i<t+1>

−∂L<t>

∂W
− i<t>

)
(8)

Applying (3) for W<t> in above equation gives,

W<t+1> = W<t−1> − α

(
2
∂L<t>

∂W
+ i<t>

)
−α

(
2
∂L<t+1>

∂W
+ i<t+1> − ∂L<t>

∂W
− i<t>

)
(9)

Further simplifying (9) gives,

W<t+1> = W<t−1> − α

(
∂L<t>

∂W

)
− α

(
2
∂L<t+1>

∂W
+ i<t+1>

)
(10)

which provides the result

W<t+1> = W ′<t> − α

(
2
∂L<t+1>

∂W
+ i<t+1>

)
(11)

where W ′<t> is the desired weight at round t without
adding the noise i<t>. Therefore, we see the noise parameter
added in the previous round t gets cancelled out over the next
iteration; meanwhile, a new noise is added at round t+1. An
overview of the mechanism is presented in Fig. 3.

Suppose the noise is not added in consecutive client rounds
but between two random rounds t and t + k. In such a case,
the noise will still be cancelling out after t+ k iteration. This
can represented by extending Equation 10.

W<t+k> = W<t−1> − α

(
∂L<t>

∂W
+

t+k−1∑
j=t+1

∂L<j>

∂W

)
(12)

− α

(
2
∂L<t+k>

∂W
+ i<t+k>

)

However, in this approach, the noise initially added in itera-
tion t may have a relatively higher impact over the gradients of
the next k−1 local iterations as noise does not get cancelled at
consecutive rounds. Thus, noise can result in deviations from
the original gradient descent without noise. Therefore, we use
the application of noise masks at consecutive rounds in our
implementations with minimum impact from the noise.

When considering global aggregation of models, for a local
client l, the gradients that are sent to the server for aggregation
after client round t can be obtained from Equation 8 as
dl = ∂L̃l

<t>

∂W + ĩ<t>
l , where ∂L̃l

<t>

∂W = 2
∂L<t>

l

∂W − ∂L<t−1>
l

∂W

and ĩ<t>
l = il

<t> − il<t−1>. After aggregating the gradients
by the server, the global gradient dg sent back to clients is:

dg =

n∑
l=1

∂L̃<t>
l

∂W
+

n∑
l=1

ĩ<t>
l (13)

We use zero-mean local noise, where the accumulated noise
component

∑n
l=1 ĩ

<t>
l averages zero according to the sum of

random independent variables and the central limit theorem
and results in a standard deviation of σ

√
2
K for K number of

clients when the local noise has σ standard deviation. Due to
this cancelling noise, individual local model gradients are not
directly readable by the aggregator, preserving the local model
update’s privacy. Thus, with a sufficient amount of clients, the
SAP mechanism can provide a gradient accumulation like a
normal aggregation process while maintaining privacy.

B. Implementing Privacy Recommendations

The attack module can perform an attack function ψa()
over the model M without privacy and obtain a metric θa on
attack success. This metric is forwarded to the recommender.
The recommender can have a predefined threshold level θt
for attack success information metric, which can either be
provided by the consumer, according to their preference of
privacy setting, or by the service provider, meanwhile securely
providing attack configurations. Then, the recommender can
run the training rounds with SAP-enabled FL model training
function as γ(M), and in each round, they can check if θa ≤
θt. Algorithm 3 provides the summary of the implementation.
Algorithm 3 Implementing Privacy Recommendations

1: Input: Attack function ψa(), model training function with
SAP enabled γ(), FL model M , threshold success rate θt

2: Output: FL model with privacy recommendation M̄
3: Get ψa(M)→ θa
4: for each training round i do
5: Let M̄ = γ(M)
6: ψa(M̄)→ θa
7: if θa ≤ θt then Return M̄
8: end if
9: end for

The module can then successfully recommend the trained
model to be sent to a third-party server. The IoT device can
either continue training the model after this instance or can
directly send this model to the aggregator.

In a case where the threshold is not reached, several changes
can be made. First, the hyperparameters can be tuned, and the



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 7

Fig. 3: SAP process of splitting the local model gradients and
noise addition with Pseudo-Random Generator (PRG).

noise threshold levels can be adjusted to reach the threshold.
If that does not work, the model should not be passed for the
aggregation process since it can potentially leak the privacy
of the clients. Therefore, the recommender can block sending
the model to a third party. The client can wait until sufficient
data is obtained to train it with a more generalised dataset.
Clients can also wait for the next global aggregation round(s)
until an updated model M is received from the server. Then,
they can increase their model generalisability by aggregating
with the global model with reduced overfitting, which will be
helpful in reaching the threshold limits faster.

C. Comparison with Differential Privacy-based Noise

The DP-based deep learning was first introduced in [22]
with Differentially Private Stochastic Gradient Descent (DP-
SGD), where random noise is added at each training step. In
DP-SGD, the gradients are clipped with clipping threshold C:

∇W̃ (xi)← ∇W (xi)/max

(
1,
||∇W (xi)||2

C

)
(14)

where xi is an element in the dataset of N total elements with
group size L. Then, Gaussian noise i(0, σ2C2I) is added for
each gradient.

∇W̃ ←
∑
i

(
∇W̃ (xi) + i

)
(15)

Therefore, unlike our method, the random addition of noise
will get compounded over the iterations as shown by Equation
(15). This results in reduced model utility over time since the
accuracy of the model tends to degrade with compounding
noise in the gradients.

VI. EXPERIMENTS

In this section, we present the experiments and simulations
we performed on the two components of the framework. First,
we discuss the novel inference attack type FL-TIA, which is
launched by the attack module for resilience testing. Next,
we discuss how our proposed defence mechanism can protect
privacy, which is done at the privacy recommender module.

A. Launching FL-TIA Against FL Models

This section discusses the experimental procedure used to
evaluate the FL-TIA on a simulation of IDS-based FL models
in VR devices. For our experiments, we used the dataset
NSL-KDD, often used for IDS simulations, which consists
of 125,973 data records providing details on network traffic
based on various network attack scenarios. From the dataset,
we pick the two most frequent types of traffic for our exper-
iments: normal and Denial of Service (DoS) attacks. All the
experiments were implemented using Keras and Tensorflow
Federated (TFF) framework. We set the configurations in
TFF for both clients and the aggregator to train the models

automatically with SGD optimization. For the dataset, we used
70% training vs. 30% test set. The training set was equally split
among the clients. We run the experiments using a computing
instance with an Intel Xeon 2.20 GHz CPU, 26GB RAM, and
an NVIDIA Tesla T4 GPU. We considered the target model a
sequential NN with a hidden layer of 512 dense units followed
by a dropout layer with a 0.2 dropout rate. The attack was
simulated for multiple clients, where we trained the initial
global model with 50 clients using the original data. Initially,
we ran 20 rounds to make the FL target model converge to a
stable accuracy.

As the next step, we trained a GAN to generate repre-
sentative data for the attacker. We used 1,000 samples from
the original dataset to train the generator and discriminator
models. This resembles an attacker getting a small percentage
of data as a representative sample of the original dataset.
The generated dataset from GAN is unlabelled. Therefore, we
used the trained FL target model to get labels by sending
the generated data through the target model. The generated
results show a high similarity with reduced error over GAN
training when compared with original training sets, as shown
in Fig. 4. For the NSL-KDD dataset, we compare the mean and
standard deviation values of the numerical attributes present
in the GAN-generated sample data with the mean values of
the original dataset in the log scale. The results show the
values lie close to the actual mean, with a similar standard
deviation. The Generated dataset, therefore, can be considered
a representative of the original data used in FL.

(a) Mean (b) Standard deviation

Fig. 4: GAN model training metrics for NSL-KDD dataset.
To create the attack model, we poison the target models

using the generated labelled data with 20,000 records for the
NSL-KDD. Here, we evenly distribute GAN-generated data
for model training among the clients. We also used 10,000
generated data records to train five shadow models. The NN
architecture of the shadow models is set similarly to the
target model. We trained the shadow models for 20 rounds.
The shadow models produce 50,000 shadow training outputs,
which we use to train our attack models further. After that, we
train the attack model with the data from the poisoned target
model and the shadow models. It is a Multilayer Perceptron
(MLP) classifier with two hidden layers of 64 and 16 units.

1) Use of Combined GAN and Shadow Model for FL-TIA:
The proposed FL-TIA uses both GAN and shadow models
to launch the attack. This is done since, from the attacker’s
perspective, real data is not available to the attacker. They may
possess a small representative of data where they enrich the
dataset through GAN. By training shadow models, the attacker
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can get further information on how the FL model gets trained.
We compared both approaches, and our results in Table I show
that combining both methods gives the highest attack accuracy.

TABLE I: Metrics for FL-TIA attack model at round 21.

Metric Only shadow
models

Only GAN-based
poisoning

Both GAN and
shadow models

Test accuracy 0.6617±0.012 0.6897±0.021 0.8183±0.016
Precision 0.5673±0.017 0.5716±0.016 0.6529±0.013
Recall 0.6529±0.017 0.7085±0.011 0.9200±0.027
F1 0.5931±0.013 0.6267±0.014 0.7635±0.013

2) Maintaining Accuracy of Attack Models over FL Model
Training Rounds: When using the same attack model trained
for a previous round for predicting membership states, we
observe that the accuracy of the attack model is gradually
reduced. None of the previous works of the current state-
of-the-art, such as [3], [9], considered the factor of loss of
accuracy over iterations. In our attack, we introduce the ap-
proach of continuous progress of the attack model to maintain
its accuracy. For this, we follow the approach described in
Algorithm 2, where we train a new attack model in each round
by continuously poisoning the target model.

To compare our approach with the existing works, we
continue to train attack models for a further 10 FL rounds with
Algorithm 2 using 20,000 GAN data records of NSL-KDD.
We also evaluate the metrics over the FL rounds with the
attack model without further training, as presented in related
work [3]. We tested the accuracy of the attack models with
5,000 poisoned data records for NSL-KDD, having a similar
distribution of membership states. From the results in Fig. 5a,
we observe that the attack model continuously updated with
our approach maintains the initial accuracy, while the accuracy
of the attack model without any updates is reducing over the
rounds. Similarly, recall and F1 metrics in Fig. 5 illustrate
that our attack is capable of maintaining the scores at higher
values throughout the training rounds. Therefore, our attack
can consistently maintain the accuracy of the attack model.

3) Time Inference Attack via Round Prediction: To evaluate
the FL-TIA success rate over multiple rounds, we designed
an experiment summarised in the Algorithm 4. Here, for each
round t, we get a sample GAN dataset Dt

gen where initial
membership state s = 0 for all elements in Dt

gen. We send
this data through the attack model, Ωt, for round t. The
membership probability ps for a round u in a dataset Du

gen

can be obtained as:

ps =

|Du
gen|∑

i=1

(Ωu(yupri , y
u
geni

) = s)

|Du
gen|

(16)

where s is the membership state of either in or out. Using this
equation, we obtain the membership probability p0 of round
t from Ωt, with a GAN dataset Dt

gen where initially s = 0
in all elements in Dt

gen. Then, we poison the FL model with
the same dataset over another round t+ k. Here the dataset is
now called Dt+k

gen and membership state s = 1 for all elements
in Dt+k

gen . Next, the dataset is tested with the attack model
Ωt+k specialized for round t + k. After that, membership
probabilities p1 predicted by Ωt+k is obtained.

Algorithm 4 Evaluating FL-TIA through round prediction

1: Input: Representative dataset Dt
gen ← (ytpr, y

t
gen), attack

model Ωt for round t, attack model Ωt+k for round t+ k
2: Output: The Attack Success Rate ASR
3: s = 0∀ elements in Dt

gen

4: Get p0 =
∑|Dt

gen|
i=1 (Ωt((yt

pri
,yt

geni
))=0)

|Dt
gen|

5: At round t + k; POISON()← Input: Dt
gen; Return: Dt+k

gen

where s = 1∀ elements in Dv1

6: Get p1 =
∑|Dt+k

gen |
i=1 (Ωt+k((yt+k

pri
,yt+k

geni
))=1)

|Dt+k
gen |

7: Return ASR = p1+p0

2

In the experiment, we train attack models for each new
round from round 21 up to round 30. For each round, we use
a sample GAN dataset with 5,000 records for NSL-KDD as
testing data across two rounds to evaluate the FL-TIA. We
get the round predictions for the interval between each new
attack model and the attack model in FL round 20, based on
Algorithm 4. From this, we obtain the Attack Success Rate
(ASR) for both with and without the continuously updated
attack models. Here, we defined ASR as an average value for
a success rate of the correct membership predictions between
the two rounds. The results are shown in Fig. 5d. They show
FL-TIA has a higher success rate with our approach of using
continuously updating attack models.

4) Relationship between FL-TIA via Round Prediction and
Membership Inference: FL-TIA through round prediction de-
pends on the accuracy of the attack models of membership
inference since our attack is based on identifying the mem-
bership change for a data record between two rounds. We
can observe that the ASR of round predictions in Fig. 5d has
an accuracy of around 0.6 with our approach. However, for
both cases, the attack models’ accuracy is relatively higher
than the round prediction. This may occur because, in a round
prediction attack, we evaluate data using two attack models
where ASR depends on the accuracy of the two models. It
would be approximately equal to the probability:

ASR ≈ pt × pt+k (17)

where pt and pt+k are the accuracies of the attack models at
rounds t and t+ k respectively.
B. SAP Defence Mechanism Against the Attacks

In defending against privacy attacks, we use our SAP
defence technique described in Section V, where gradients are
split into two components and added with random noise for
gradient value corresponding to each parameter in the model.
The noise gets cancelled over the next rounds; therefore, the
impact on the overall model utility from the defence is low.
We test this by implementing the mechanism on a LeNet-
5 model, where we use the Facial Expression Recognition
(FER-2013) dataset to train the model. The dataset resembles
a scenario of VR-based facial data where the FL model is
used to identify facial expressions in real time. The FER-2013
dataset consists of 7 types of expressions with 28,709 training
and 3,589 testing data in 48x48 pixel grayscale images. We
used 50 random images covering all categories and trained the
LeNet-5 model for 50 iterations.
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(a) Accuracy. (b) Recall. (c) F1. (d) FL-TIA success rate.

Fig. 5: The accuracy, recall, F1 of attack models and FL-TIA success rate with and without continuous updates for NSL-KDD
including 95% confidence intervals for each FL round.

1) Impact on FL Model: First, we analyse the impact of the
defence over the model convergence to identify if there are any
utility trade-offs of the mechanism. For the SAP mechanism
noise mask, we selected a uniform noise function that is in the
float range from -5 to 5. The loss values for different levels
of perturbations are presented in Fig. 6a.

(a) Perturb. vs. no privacy. (b) Noise ranges.

(c) FL aggregation rounds.

Fig. 6: Convergence of NN model with (a) adding noise to the
NN layer with changing probability, (b) varying noise ranges
adding with 100% probability and (c) variation of the accuracy
of FL global models over 20 FL rounds.

From the results, we observe the model converges since
the loss is reduced over all the levels of perturbations. The
addition of perturbations at higher levels results in higher
losses at the beginning, but the model eventually reaches stable
convergence over the local iterations.

We also tested the effect of different noise ranges on the
model convergence. We selected four different ranges shown
in Fig. 6b. From the results, we see that when the noise levels
increase, more disturbances can be seen during the model
convergences. However, since the noise gets cancelled out in
the following iterations, they reach convergence. Therefore,
selecting intermediate noise levels can provide better privacy
protection than lower ranges, which also provides a similar
convergence and model utility. The benefit of having higher
perturbations is enhanced privacy, which we evaluate in the
next experiment to analyse the resilience of the mechanism
against the deep leakage attack.

Furthermore, we evaluated how two different NN models
globally converge with the mechanism. Here, in addition to
NSL-KDD, we also used the MNIST dataset, which is an
image dataset of 60,000 records of handwritten digits. For
experiments, we used two NN architectures for two datasets:
the sequential model used in Section VI-A for NSL-KDD
and a Convolutional Neural Network (CNN) architecture with
2 convolutional layers followed by 2 dropout and sequential
layers. We used 10 sample clients, where each client has 1,000
data records. The experiment was run for 20 FL aggregation
rounds without privacy and with the SAP mechanism. Results
are shown in Fig. 6c. From the results, it can be observed
that different model architectures can have varying impacts
on the aggregation with the SAP mechanism at the beginning
of the global aggregation rounds. Initially, MNIST models
seem to have relatively lower accuracy in the initial rounds
compared to their corresponding no-privacy implementation.
Compared with that, NSL-KDD has an initial accuracy that is
similar to the original FL models without privacy. As discussed
in Section V, the SAP mechanism has a similar aggregation
accuracy to the original update since the impact from noise
on accuracy is mitigated due to noise averaging to zero and
resulting near similar gradient updates to the original gradients.

2) Defence Against Deep Leakage Attack: In this exper-
iment, we test the performance of SAP defence against an
existing attack scenario on client data. For this, we use the
improved version of the Deep Leakage iDLG attack [11],
where the attack module launches this attack on the client
model. The main difference between DLG and iDLG is that
iDLG has better attack convergence capability, as discussed
in Section IV. Therefore, iDLG is a more challenging attack
than DLG, yet their main procedure of inversion of gradients
remains similar. Thus, if the defence mechanism provides
protection against iDLG, it will inherently protect against the
DLG. Following this, the attack module attempts to reconstruct
the original data used to train the model by inverting the
gradients. To perform the attack, we train the LeNet-5 for 5
iterations with small amounts of data, with 5 face images, since
small batches are more vulnerable to attack. The trained model
is then attempted with the iDLG, without and with our SAP
mechanism. The error incurred in reconstructing the original
dataset is presented in Fig. 7.

Here, we observe that without the privacy mechanism, the
model is highly vulnerable to attack, and the images can
successfully be reconstructed via iDLG. However, with our
defence, the Mean Squared Error (MSE) threshold metric
increases over the iterations for all percentages of the pertur-
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Fig. 7: Variation of MSE of the iDLG attack.
bations added via the mechanism. This results in increasing
difficulty for the attacker in reconstructing the original data.
Therefore, the method can provide resilience against iDLG
attacks, even at low quantities of data with more vulnerability.
Furthermore, we compared the MSE of the attack with Gaus-
sian and Laplacian noise, which are widely used in DP [10].
Similar to the original work of DLG in [10], we set the
threshold variance at 10−1 and mean 0 for both noise ranges
since the iDLG attack also has the same procedure of DLG
for calculating the loss between the gradients. Fig. 7 shows
that, compared with the privacy enhancements from Gaussian
and Laplacian noise, our mechanism provides a significantly
high reconstruction error, thus providing better privacy for the
models. Fig. 8 shows how the reconstruction of sample data
is observed at different iterations of the attack. Results show

Fig. 8: Data reconstruction results without privacy implemen-
tation vs. different levels of privacy using our SAP mechanism.

our method does not produce any identifiable features for all
of the perturbation levels.

3) Defence Against FL-TIA Membership Variation Detec-
tion: The membership variation detection FL-TIA attack is
the other type of attack we introduced in Section IV, where
the attacker intends to reveal time-related information in the
local IDS model in the consumer’s VR headset. To verify if
our proposed SAP mechanism can defend against the FL-TIA
with membership variation detection, we apply the defence to
the same target NN model used for FL-TIA.

When considering the minimum baseline threshold attack
accuracy required to provide defence recommendations, we
select 50% accuracy for inference attacks similar to [23], [24].
Therefore, for a particular client, an attacker should no longer
guess the presence of a time-related attribute more than the
random guessing accuracy once the defence is implemented.
We follow Algorithm 3 to obtain this threshold by varying
the local model SAP parameters like perturbation ranges
and perturbed NN layers. To compare SAP with existing
techniques, we also launched the widely adopted defence DP-
SGD [22] against the attack FL-TIA. For DP, this value is
obtained by varying the privacy budget (ϵ) parameter.

For the SAP mechanism with 1 layer perturbed, we obtain
a local model accuracy of 95.16%, which is very close to the
original model’s accuracy of 95.78% without privacy. Then,
we compare the success rate of the membership attack ASR
with the mechanism, which we obtain as 50.07%. The ASR
without privacy is recorded as 69.25%, and therefore, we see
a significant improvement in privacy against the attack by
lowering the ASR. In our defence, the ASR is very similar
to the random guessing probability. For DP, We use different
levels of ϵ where lower values provide a higher privacy
guarantee with more noise added to the model. The results
are summarised in Table II. From the results, we see the

TABLE II: Defence method compared with DP against mem-
bership variation detection.

DP Status FL Accuracy ASR
No Privacy 0.9578±0.005 0.6925±0.015
DP ϵ = 4.0 0.9515±0.004 0.6538±0.023
DP ϵ = 2.0 0.9449±0.002 0.5869±0.016
DP ϵ = 1.0 0.9402±0.002 0.5708±0.003
DP ϵ = 0.5 0.8605±0.001 0.4999±0.001

Our Approach 0.9516±0.002 0.5007±0.042

DP-SGD can reduce ASR and improve privacy, where at the
privacy level of ϵ = 0.5, it provides a lower ASR similar
to our proposal. However, the utility of the model has also
significantly reduced at this level, where the FL target model
accuracy has dropped to 86.05%. Therefore, the comparison
shows our SAP method can successfully defend against the
attacks; meanwhile, it is capable of maintaining the model
utility similar to the original performance over the iterations.

4) Time Consumption for Defence: To experimentally eval-
uate the time taken for the defence mechanism, we performed
experiments for the NSL-KDD dataset sample of 10,000
training data in a model running 1,000 local iterations. For
the DP, we set privacy level ϵ = 1. For SAP, we set a
100% perturbation percentage applied to layer 1 of the model,
following a similar configuration to the previous experiment.
The same model configurations for the NSL-KDD dataset
specified in Section VI-B1 were used in the experiments. The
average times taken are shown in Table III.

TABLE III: Time consumption for running local epochs.

Num. Epochs No Privacy (s) DP (s) SAP (s)
100 0.4129±0.062 0.9578±0.005 0.5116±0.010

1,000 2.8802±0.509 8.0977±1.008 3.594±0.179
10,000 36.5243±1.539 94.4242±1.656 37.8149±0.621

From the results, it can be observed that the addition of our
SAP mechanism with only a small perturbation mask does
not result in any significant impact on the overall time taken
for a local client, especially when increasing the number of
iterations. However, it is clear that compared to our approach,
DP can result in significantly high time due to its inner iterative
implementation of the addition of noise and clipping over all
the model parameters, thus resulting in higher computation
costs. Furthermore, the mechanism does not alter the existing
size of the client’s local model. It only adds the noise mask
to the existing model gradients. Therefore, when sharing the
local model with third parties, it transfers the same model size
as a no-privacy model, resulting in a similar latency.
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VII. DISCUSSION

In this section, we discuss different aspects of the proposed
novel FL-TIA attack and improvements to be made in the de-
fence mechanism. Furthermore, we highlight the significance
of our work compared with related works.

A. Factors affecting the Defence and Trade-offs

The main factor that can mitigate the attack is the noise
addition by the defence mechanism in each round. Other
factors include the nature of the noise since random uniform
noise added in the process does not concentrate towards
a mean value like Gaussian or Laplacian, which makes it
difficult to eliminate the noise by the attacker unless it is
removed explicitly by the original source at a later round.

Suppose an attacker eavesdrops on consecutive local models
sent to the server. In that case, they may not be able to
obtain the original model update by summation of the two
models, even if the client runs only one local client iteration
and sends the model right away since there will still be a
noise mask for the next round implemented on it. By analysing
multiple consecutive models, the attacker may try to estimate
noise ranges or coefficients of the decomposed gradients. The
defence technique can, therefore, vary these parameters to add
an extra layer of protection. However, the higher noise ranges
or varying coefficients may affect overall local and global
model convergence, which may also need to be considered.

B. Impact of Poisoning on FL Model Accuracy

1) Aim of the GAN-based poisoning phase: In our proposed
FL-TIA, we perform poisoning of the FL models using a
GAN-generated dataset. Unlike many poisoning attacks that
distort the model classification, GAN-based poisoning is only
done to get training data for the attack model. Therefore, the
main intention of this poisoning is to provide an effective
representation of the original dataset, which the attacker should
be able to train the attack model with the GAN-based data.

(a) Impact of poisoning. (b) Complexity of poisoning.

Fig. 9: (a) Impact and (b) complexity of GAN-based poisoning
compared with random and targeted poisoning for NSL-KDD.

2) Comparing GAN-based Poisoning Impact and Complex-
ity with Other Poisoning Types: One of the ways to verify if
the GAN-generated dataset successfully represents the original
data is by checking the impact on a local client’s model
accuracy before and after poisoning. If GAN-based data is
a good fit, it should not change the accuracy significantly. To
calculate the impact, we use equation 18 as follows:

Impact =
Error(Fp)− Error(F )

Error(F )
(18)

where Error(Fp) = 1−F1. For further comparison, we used
three types of poisoning: 1) adding new GAN-generated data,
2) random swapping of labels within the original dataset, and
3) targeted poisoning, where labels are poisoned with only one
specific targeted class label. For this, we use 1000 original
data samples of NSL-KDD. For GAN-based poisoning, we
gradually added new GAN data examples up to another 1000
values, totalling the dataset to 2000 with the original data and
denoted as 100% poisoning. For other types of poisoning,
we replaced the labels of the existing 1000 samples up to
100%. Fig. 9a shows the results obtained for the impact of
the poisoning of the dataset. Relative to the other poisoning
attacks, GAN-based poisoning has a lesser impact on the
model utility, which confirms that the GAN dataset is a better
representation of the original data. It also shows that such
a GAN-based attack is relatively difficult to determine from
observing model metric variation when compared with other
poisoning approaches. Thus, the defence mechanism may be
more feasible than attempting to detect GAN-based poisoning.

To measure how complex the poisoning attack is, we used
the ratio of the poisoned data with the total dataset size. This is
a measure with the dataset to evaluate how feasible the attack
is to be performed in practice, as represented in equation 19:

Complexity =
|Dp|

|D +Dp|
(19)

where Dp is the poisoned dataset amount, and D is the
amount of benign data in the dataset. The more poisoned
data in the total dataset, the more complex the attack since it
will practically be increasingly difficult to poison the dataset
with minimum noticeable effort. Furthermore, it will be more
difficult to modify existing samples of data in private clients
rather than introduce new data into the dataset. Thus, GAN-
based poisoning is less complex than the two other approaches.
The results for complexity are presented in Fig. 9b.

C. Limitations and Potential Enhancements on Defence

The proposed mechanism does not provide a privacy bound
compared with DP. However, as we have shown in Section VI,
tighter privacy bounds can lead to utility loss. Similarly, DP
can be more successful on large-scale clients who have large
datasets, which may be unlikely at a single IoT consumer level.
Therefore, as a potential enhancement to our existing solution,
we can make a hybrid approach by adding quantifiable DP
at intermediate client levels of a hierarchical FL architecture;
meanwhile, the SAP mechanism can be used at individual
consumer levels.

D. Comparison with Related Work

We compared our research with multiple associated works
that are in the FL domain. A summary of the comparison
is presented in Table IV. It shows that none of the related
works includes all the aspects we considered. Especially when
considering IoT, no related works provide a comprehensive
framework for privacy recommendations for models via the
adversarial ML approach we presented.
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TABLE IV: Summary contribution of our work.

Characteristics Ref
[25]

Ref
[16]

Ref
[18]

Ref
[26]

Ref
[27]

Our
work

Privacy solutions for consumer IoT M L L M L H
Novel framework focused on privacy
enhancement for FL models

L H H M H H

Introducing new attack type on FL L H L L L H
Continuous attack accuracy over time
for attack without defence

L L L L L H

Design of new defence mechanism H M M M H H
Evaluating resilience of FL models
against new and existing attacks

M L L L M H

Maintaining model utility by FL defence M L L M M H
Achieve high defence privacy levels for
multiple attack types

M M L M L H

L Low: The paper has no/very low consideration in this area.

M Medium: The paper partially considers this area, no specific focus.

H High: The paper considers this area in high detail.

VIII. CONCLUSION

In this research, we evaluated the privacy of consumer
IoT devices with FL-based services and introduced privacy
recommendations based on the resilience of FL models against
attacks. We presented a privacy-enhancing framework for
FL-based services to perform privacy updates locally in the
consumer device. This framework can perform privacy tests
by launching attacks against FL local models from different
services. For this, we performed an existing iDLG attack
to reconstruct data, and we also performed a new type of
attack, FL-TIA, based on time. The results show that plain
FL models are highly vulnerable to attacks and can leak
unintended user information. Therefore, we further introduced
a novel privacy mechanism named SAP based on splitting
gradients and adding perturbation masks over time. The exper-
iments show our method can significantly outperform existing
privacy-preserving techniques of random perturbations and DP
without degrading FL model utility over time. In the future, we
plan to extend the framework to P2P systems, where consumer
devices can fully decouple from centralised FL-based services.
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