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Abstract. A wide adoption of Artificial Intelligence (AI) can be ob-
served in recent years over networking to provide zero-touch, full au-
tonomy of services towards the next generation Beyond 5G (B5G)/6G.
However, AI-driven attacks on these services are a major concern in
reaching the full potential of this future vision. Identifying how resilient
the AI models are against attacks is an important aspect that should
be carefully evaluated before adopting these services that could impact
the privacy and security of billions of people. Therefore, we intend to
evaluate resilience on Machine Learning (ML)-based use case of network
traffic classification and attacks on it during model training and testing
stages. For this, we use multiple resilience metrics. Furthermore, we in-
vestigate a novel approach using Explainable AI (XAI) to detect network
classification-related attacks. Our experiments indicate that attacks can
clearly affect the model integrity, which is measurable with the metrics
and detectable with XAI.

Keywords: AI Resilience · Explainable AI · AI Attacks · Activity Clas-
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1 Introduction

Real-world use of AI can have various caveats. Once deployed in the cloud, the
models will constantly undergo different types of intrusion attempts. Although
pragmatically, these attempts are unlikely to pass through the API gateway; it
is not a certainty that it will be the case always. On the off chance that one of
these attacks becomes successful, the model can be either stolen, taken under
the control of the attacker, or completely/partially disabled. Therefore, achieving
model robustness requires constant analysis of the model for various attacks.

However, despite the efforts to implement security and privacy, ML can still
undergo numerous attacks that can compromise trust in the final outcome of
the model. These attacks include evasion, poisoning, backdoor, and inference
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attacks [6]. This can create an issue in applying AI to real-world applications such
as network automation. If an AI model performing critical network operations is
compromised, the user’s data that is handled via the AI is at risk, and the end
users can lose trust in the network [13]. Yet, AI-driven automation is expected
to be the future, which requires fully automated solutions to handle complex
networks with trillions of devices in beyond 5G.

Hence, analysing a model’s resilience against attacks is essential in AI before
integrating it into a real-world application in future networks. A major compo-
nent in resilience analysis is the metrics used to analyse the models. These met-
rics can uncover information regarding the model and its effectiveness against
attacks. However, these metrics need to be customized during the implemen-
tation process for each attack type. By identifying the vulnerabilities and the
model’s effectiveness against attacks, stakeholders can make important decisions
regarding the model and the system’s health. To further verify and obtain more
detailed information, the stakeholders can be provided with explanations gener-
ated with XAI methods. XAI is a set of mechanisms that can reveal the informa-
tion on the black-box AI models, explaining how the AI decision-making process
is done [15]. In this paper, we investigate on the possibility of using XAI as a
detection tool for resilience attacks against AI by observing changes in post-hoc
explanations with the attacks.

As a practical scenario of using AI in networking, we use a target use case of
network activity classification, which can be regarded as an essential component
in future network automation processes. It can differentiate various types of data
transmitted over the network, which can be used for tasks such as scaling and
prioritising highly demanding traffic, identifying malicious traffic, and personal-
isation services. To analyse the resilience of the network activity classifier, we
launch two attacks: poisoning and evasion attacks. Then, we analyse the metrics
and use XAI to determine if it is possible to identify attack scenarios.

1.1 Our Contributions

Despite many techniques to implement ML-based systems on networks, we ob-
serve a lack of metrics for resilience evaluation in the related literature. Moreover,
the analysis of the impact of attacks on AI models via XAI is a novel area that
can be considered as a potential path for attack detection. We bring the dis-
cussion of these topics, which are essential aspects to be considered for future
network-based AI. Therefore, we summarise our contributions as follows:

– Presenting a use case of network activity classification model and launching
network attacks against the resilience of the model.

– Assessing two attacks, evasion, and poisoning of ML models via multiple
metrics, including measuring the impact on the models and complexity of
the attacks.

– Performing a comprehensive XAI Shapley Additive Explanations (SHAP)-
based attack analysis on the two attacks under different conditions.
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We also provide an open-source repository3 that consists of the implementa-
tion of this work, along with the dataset sources.

The rest of the sections are arranged as follows. Section 2 discusses associated
works in the AI-based network classification use case and possible attacks. De-
tails of our system model are presented in Section 3. Section 4 provides methods
for implementing AI attacks on the system model. Section 5 provides experi-
ments and their results. We discuss possible research directions in Section 6.
The paper is summarised and concluded in Section 7.

2 Related Works

AI-based network traffic analysis is an important aspect that network systems
should maintain for maintaining a secure and efficient network environment.
Several works are available in the literature that has implemented AI-based
systems to analyse network traffic. Authors in [7] present a detection technique
for slowDoS attacks on encrypted traffic using clustering-based AI. Work in [1]
uses Neural Networks (NN) and Principal Component Analysis (PCA) to analyse
and classify network traffic for potential identification of malware traffic. In [2],
the authors develop a Recurrent Neural Network (RNN)-based heterogeneous
traffic detection and classification system for 5G networks.

However, detecting vulnerabilities in such AI applications that classify the
traffic is a significant concern since the models trained on AI also need to train on
accurate data in a secure and private environment. For example, in decentralised
systems such as distributed AI or Federated Learning (FL) [12], AI models are
trained by aggregation of models trained by many clients. In such a case, provid-
ing guaranteed privacy and security for each client would not be feasible. Even
centralised systems can be vulnerable to attacks, where attackers can exploit a
vulnerability and alter the operations in the training of AI models.

Attacks such as data poisoning [3] can cause degradation in the performance
of ML models. Here, an attacker attempts to cause damage to the model pre-
dictions by manipulating the input data used to train the model. Several types
of poisoning attacks exist, which include: 1) untargeted poisoning, which hin-
ders convergence of the target model, leading to denial-of-service, 2) targeted
poisoning, which causes abnormal predictions for some inputs; and 3) backdoor
attacks, that uses targeted poisoning attacks go unnoticed via techniques such as
hidden triggers embedded in the training data [14]. In network traffic classifica-
tion scenarios, an attacker may use this type of attack to evade attacker-specific
malicious traffic by poisoning the model to be insensitive to malicious traffic.

Evasion attacks are another type of attack where the attacker aims to evade
the decisions made by the learned model during the test time; however, unlike
poisoning attacks, they do not interfere with the training data [4]. Instead, they
add perturbations to the inference data, which can cause erroneous output from
the trained model. If an evasion attack is made for tasks such as network traffic
classification scenarios, an attacker can successfully evade any malicious traffic

3 https://github.com/Montimage/activity-classification
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by having a small perturbation, misleading the classification of the AI model,
even if the model is trained accurately and safely in the training phase.

Therefore, by considering these issues, assessing the impact of these attacks
on AI is a significant requirement to identify the level of resilience of the overall
intelligent system against the attacks. Furthermore, having XAI-based inspec-
tion on the model outputs can provide more explainability on model behaviour.
Especially with attacks, if the model behaviour is changed with attacks, XAI
itself can be used as a potential detection mechanism against the attacks, even if
the changes are subtle and not visible, merely observing model predictions. Thus,
we have two benefits of using XAI in the use case: 1) enhancing model trans-
parency via explanations and 2) its potential use to evaluate resilience against
poisoning and evasion attacks. However, we observe a lack of related literature
considering both these aspects of XAI. Hence, in our work, we highlight the novel
concept of using XAI as a potential tool for network classification scenarios for
the detection of adversarial attacks.

3 System Model

The network activity classification is based on users interacting with a user’s
end personal devices. An overview of the system model is presented in Fig. 1.

Fig. 1: Overview of the system with XAI and metrics implementation. The at-
tacker is performing attacks; meanwhile, the resilience metrics and XAI analyse
the impact, complexity, and possible detection of the attacks.

Here, network packets are analysed by a packet-capturing service. The meta-
data in the network packets includes the type of data that the payload of the
packet consists of. This information is preprocessed and collected into a main
dataset. Next, the data is split to train and test sets, where an AI model is first
trained with the train data. The objective of this model is to classify the type of
data that the payload consists of for a given metadata. Next, the trained model
is tested with the test set to identify the performance of the model.

However, an attacker can interfere with the model training or the testing
phase. They can launch poisoning attacks on the training data or target the
test data to launch evasion attacks. Therefore, the model is vulnerable in both
phases of the ML process.
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Therefore, resilience metrics can be obtained to evaluate how the model is
resilient against the attacks on AI. For this, we use two types of metrics: impact
and complexity [11]. The impact metric measures how critical the attack is by
analysing the changes in the accuracy metrics. The complexity is the level of
difficulty of launching it from the attacker’s side. Since we simulate the attacks,
we can analyse the trade-off between the impact and complexity to get overall
attack performance. Furthermore, we get the XAI metrics to identify internal
changes in the ML model with the attacks. Such changes can lead to a potential
attack detection technique, where we investigate from experiments in Section 5.

4 Attacks on AI

This section presents details of the two attacks we implement on the network
traffic classification system. We use two attacks: 1) poisoning attacks during
the training phase and 2) evasion attacks in the testing or inference phase. We
highlight the procedure of launching the attacks, their variations, and constraints
in the implementation.

4.1 Attacks at Training Time: Poisoning Attacks

The resilience of an explanatory platform can be evaluated by analysing how
the platform would behave during an attack event. The observations would be
the deviations in the model parameters when compared with the models before
the attack and the output explanations provided by the trained models after the
attack. The level of impact that an attack can be quantified with suitable metrics
for the specific attack type. To simulate such a scenario, a poisoning attack was
implemented on a network activity classification system, where an attacker is
expected to perform different types of poisoning to the original dataset used to
train the classification model. The overview of the attack is shown in Fig. 2.

Fig. 2: Poisoning attacks on the activity classification model.

Here, the attacker can perform the data poisoning attack in two approaches:
1) modifying/mutating the original dataset or 2) adding new adversarial dataset
examples to the existing dataset. For the second type, the attacker can use a
generation technique like Generative Adversarial Networks (GAN) [16] for the
attack. For the use case, we perform three types of poisoning attacks:
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– Random label flipping attack - attacker randomly changes the labels in
the original dataset. The objective of this attack is to reduce the utility of
the model.

– Targeted label poisoning attack - a selected label type is favoured in
flipping the labels by the attacker. The attacker intends to create an artifi-
cially biased dataset with the selected label to change the decision boundary
of the model.

– GAN-based poisoning attack - here, the attacker uses a GAN to gener-
ate new data instances. Depending on the GAN-generated data’s similarity
level, this attack will be more challenging to detect. The main intention of
the attacker here is to identify how the model’s internals behave without
disrupting its performance. Such poisoning can be used for privacy attacks
like membership inference [17].

Metrics to Assess Poisoning Attack For assessing how the model has
changed with the attack, we use two metrics: impact and complexity.

The impact of the poisoning on the ML model can be defined as:

Impact =
Error(Fp)− Error(F )

Error(F )
(1)

where it measures the original accuracy of a benign ML model F compared to
compromised model Fp. The impact is high when the difference between the
benign and the compromised model is high.

The complexity metric is defined as:

Complexity =
|Dp|

|D +Dp|
(2)

which computes the ratio of poisoned data Dp and benign data D. It is
regarded in poisoning that higher poisoning ratio results in higher complexity
to perform the attack.

4.2 Attacks at Test Phase: Evasion Attacks

One of the popular attack types in adversarial AI is the evasion attack. Here the
attacker attempts to misclassify the model output for maleficent advantages. In
our implementation, we adopt FGSM (Fast Gradient Sign Method) [8] white box
attack technique to generate adversarial data points used to test the web activity
classification model. Here the intuition is to add a non-random noise with the
direction same as the gradient of the cost function with respect to the data.
i.e., according to the authors of this attack, the direction of the perturbation
only needs to have a positive dot product with the gradient of the cost function
while the absolute magnitude of the perturbation is just enough to skip over the
decision boundary. This evasion method can generate sequences of adversarial
data points that can be generalized for ML models trained with different sub
sets of training data. For the purpose of demonstrating the capability of metrics
and XAI, FGSM attack is an ideal candidate because of the said extensibility
with other ML models which we intend to expand the results.
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Metrics to Assess Evasion Attacks We use two resilience metrics, impact
and complexity, that would manifest the attack’s effectiveness against the mod-
els. The impact of evasion attacks is the attack success rate for a successfully
evaded percentage of adversarial samples.

Impact =
1

|A|
∑

Xa∈A

{
1, if F (Xa) ̸= F (X)

0, otherwise
(3)

The complexity of the model can be defined as the CPU usage for the gen-
eration of evasion adversarial samples.

Complexity = tcpu ×Nadv (4)

where tcpu denotes the total CPU time and Nadv is the number of adversarial
samples generated.

5 Experiments

This section is organised under each attack type we ran our experiments on.
In addition to that, we also generate explanations through the XAI technique
SHAP to provide a granular insight into the model features and their importance
distribution.

5.1 Evaluating Poisoning Attacks

To perform the experiments, first, we trained a NN model for classifying the
network testbed dataset. The data was collected from 279 training and 103 test
instances of converted network PCAP files, with 22 features for each. We use
a sequential model for the NN with 3 layers with 12, 8, and 3 dense layers,
respectively. The configurations of the NN include Adam optimiser, batch size
of 10, and binary cross-entropy for loss calculation. After training the model for
150 iterations, NN model test accuracy without attacks is obtained as 96.12%.

Impact and Complexity Analysis Next, we perform poisoning attacks and
assess the impact and complexity of the ML model over different poisoning types.
As discussed, we have three types of poisoning: random swapping and poisoning
by targeted flipping of labels were performed on the existing training data. The
models are trained over varying poison percentages of 10%, 25%, 50%, and 100%
of the original data being poisoned. We also generated a GAN-dataset using a
small representative dataset from the original dataset, using a library called
CTGAN4. Then, we run GAN-based poisoning by mixing GAN data together
with the original data. Next, the impact and complexity were calculated for each
poisoning percentage. Graphs in Fig. 3 show how impact and complexity metrics
vary over different poisoning levels.

Here, the impact of a new GAN-generated poisoning attack is relatively lower
than the random and targeted poisoning since the new examples added by the

4 https://github.com/sdv-dev/CTGAN
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(a) Impact vs. poison percentage. (b) Complexity vs. poison percentage.

Fig. 3: Impact and complexity metrics over different poison percentages.

GAN-generated dataset are very similar to the original data examples. In GAN-
based poisoning, the attacker’s main intention is not to reduce the model utility,
since most GAN-based attacks are aimed for revealing privacy leakages without
disrupting the model utility [17]. Therefore, the differences in original accuracy
vs. the accuracy of the poisoned model here are lower. This results in lower
impact. GAN-based attack is, therefore, more difficult to detect. However, for
the other two attacks, the poisoned mode has significantly deviated from the
original model, causing a higher impact. Similarly, the complexity metrics are
higher for the random and targeted poisoning types than for the new GAN-
generated poisoning.

XAI Feature Changes with Poisoning To compare how key explanations
from XAI are different with the poisoning attacks, SHAP [9] values are taken
for the model for three scenarios of a) no poisoning, b) random label flipping,
and c) new GAN-based poisoning as follows:

The SHAP values of the model without poisoning are similar to the GAN-
based poisoning, which can be expected since they have a lesser impact on the
model. However, in random flipping, the top feature values of the model have sig-
nificant differences when compared with the model without poisoning, resulting
from the high impact of the random flipping attack.

Therefore, in summary, the resilience of the model has been impacted by
the poisoning attacks. They can be measured via suitable metrics for the attack
scenario. For example, metrics such as distances among clustering of XAI feature
values can be used to detect how impactful the attack is. Such XAI metrics
can also provide a possibility of identifying a comparable deviation from the
normal model when an attack event occurs. When considering the novelty of our
approach by using XAI, poisoning attacks can initially be detected by observing
the deviation of the most significant features compared with a non-poisoned
model. This can further be analysed with the use of metrics that can quantify
the impact of the attacks via XAI, which is considered a future work in our
proposal.
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(a) No poisoning. (b) 50% random flipping.

(c) 50% GAN poisoning.

Fig. 4: SHAP values variation over no poisoning vs. different poison types.
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5.2 Evaluating Evasion Attacks

The same dataset dimensions as in the poison attack (with 279 training data
samples and 103 test samples) were also used in the evasion attack evaluation. A
sequential keras model with 12 input nodes, 1 hidden layer with 8 nodes, and, a
final output layer with 3 nodes is fitted with the training dataset. The rest of the
hyper-parameters of the model were kept the same as the poisoning attack sce-
nario. This neural network was then used to generate adversarial attack samples
using the FGSM implementation in [10]. We generated 103 adversarial samples
from the 103 test data samples we initially obtained. Exploiting the transferabil-
ity of adversarial attacks [5], we expand our work on two more model types that
are popularly used in network function predictions, namely, LightGBM(LGBM)
and XGBoost. Here we used the same adversarial dataset generated using the
neural network to launch attacks on the boosted tree models.

5.3 Observations and analysis

We observed the following results in Table 1 for each metric before and after
each model was exposed to the evasion attack.

Table 1: Attack performance for different attack types in multiple models.

Model Attack type
Accuracy
w/o attack

Accuracy
with attack

Impact Complexity

Neural Network FSGM 96% 71% 29%
37.86µs
(1000 itr)

LGBM
Transferred
from NN

94% 72% 28%
37.86µs
(1000 itr)

XGBoost
Transferred
from NN

94% 54% 45%
37.86µs
(1000 itr)

Since the generation of adversarial samples was carried out with the neural
networks, the model complexity is consistent with all the models. With the
complexity metric, a stakeholder can realize the convenience for an adversary to
generate these samples in various devices and compare different attack types on
their expected frequency. This will allow system operators to efficiently manage
defense mechanisms adhering to resource constraints.

We observed a significant drop in accuracy when evasion samples were in-
volved. It is further manifested in the impact metric presenting how vulnera-
ble the model is to FGSM attacks. For instance, the XGBoost model is 17%
more likely to be affected by an adversarial model than a LightGBM model
when compared to a LightGBM model with the same level of accuracy. This is
valuable information for a stakeholder when deploying a model for real-world
usage. To further strengthen our analysis, we also generate explanations that
would be at the disposal of stakeholders, as shown in Fig. 5. It is apparent that
the model’s priorities, in terms of features, change in the face of adversarial at-
tacks. The Shapley values for web activities have decreased (around 16%) for the
udp protocol causing the feature to drop to the second place in ranking while
the importance of the tcp protocol has almost doubled. Such a significant fea-
ture change would provide more meticulous information for stakeholders to take
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immediate action. Towards identifying evasion attacks on models, shapley value
changes are also suitable as a validator alongside resilience metrics. However,
with these revelations, in the future, it is possible to develop automated solu-
tions with increased accuracy without losing accountability for detecting evasion
attacks with high confidence.

(a) Benign model (NN). (b) Adversarial attack (NN).

Fig. 5: SHAP values for benign model vs. evasion attack event.

6 Discussion

The analysis of XAI in our work identifies that we can observe significant dif-
ferences in a NN model undergoing an adversarial attack compared to a benign
model. In evasion attacks, if the attacker starts flooding the model with evasion
data points, the effects of the output will be reflected in the feature importance
scores. This also depends on the frequency of the attackers’ intrusions. In short,
during the pre-deployment stage of a model, system developers can use the im-
pact and complexity metrics to identify the vulnerability of the model against
known evasion attacks, while XAI is more of a detection and reconciliation tool.
In the case of poisoning attacks, the attack may go unrecognised in case if the
attack is GAN-based. This also depends on the similarity of the produced GAN
data with the original data of users. Obtaining such a representative sample from
the original may also be difficult for an attacker unless they gain access to the
original data or be an insider. Therefore, a GAN-produced poisoning attack may
also be possible to detect and defend if we provide more security and privacy
for the original data. Furthermore, the diversity and distribution of the original
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data can also affect the original reference model XAI outputs. For example, in
the case of distributed ML like FL, many clients can have local models based on
their non-Independent and Identically Distributed (non-IID) data that is spe-
cialised on a particular client. In such a case, XAI’s outputs can vary from client
to client. Detecting benign models from adversarial models via variations in XAI
is a possibility to expand in the future.

Furthermore, when comparing the key outcomes of our work with the related
works, we observe that none of the works related to network-based classifications
discuss the potential of using XAI as a detection mechanism against attacks.
A comparison of model resilience metrics of impact and complexity during an
attack incident and their trade-offs is another key finding we delivered in our
work that is not found in other works. Table 2 provides a summary comparison
of our work with key highlights.

Table 2: Summary contribution of our work.
Characteristics Ref

[1]
Ref
[3]

Ref
[7]

Ref
[16]

Ref
[17]

Our
work

Network related use case for B5G/6G AI
and attack scenarios

✓ ✓ ✓ ✓ ✓ ✓

Launching resilience attacks against
trained ML models

✓ ✓ - ✓ - ✓

Proposal of metrics to quantify resilience
on the model during attacks

✓ ✓ - ✓ - ✓

XAI-based visualisation and detection
strategy

- - - - - ✓

Possible directions on enhancing re-
silience and limitations

- - ✓ ✓ ✓ ✓

7 Conclusion

In this research, we analysed resilience metrics of impact and complexity of
two adversarial attacks, poisoning and evasion attacks, against network activity
classification scenarios. We observe that the impact and complexity can vary in
different attack categories, which makes attacks such as GAN-based poisoning
relatively difficult to detect, meanwhile having less complexity on the attacker’s
side. Thus, attacks that cause a lesser impact on the model can be more threat-
ening to the security and privacy of the model due to its difficulty in tracing the
attack. The XAI analysis with SHAP also shows that the higher the attack’s
impact on the model, the easier it is to determine by observing the variation
of the SHAP-based feature contributions. We observe higher variation over the
adversarial attacks, which cause a higher impact on the model. Therefore, XAI
can be applied as a potential detection mechanism for attack detection. It can
easily be adapted for assessing the model’s possible resilience compromises before
deploying the AI models in real-world network applications.
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