
1

Proof-of-Monitoring (PoM): A Novel Consensus
Mechanism for Blockchain-based Secure Service

Level Agreement Management
Nisita Weerasinghe, Student Member, IEEE, Raaj Mishra Student Member, IEEE, Pawani Porambage Senior

Member, IEEE, Madhusanka Liyanage, Senior Member, IEEE, and Mika Ylianttila, Senior Member, IEEE

Abstract—In the current 5th Generation (5G) networking
paradigm, the enforcement of Service Level Agreements (SLAs)
is a non-trivial measure to ensure the scope and the qual-
ity of services and standards between tenants and service
providers (SPs). On top of this, Secure Service Level Agree-
ments (SSLA) are introduced to ensure that SPs deliver the
most critical and required security-related standards defined in
the contract, such as integrity, confidentiality, availability, non-
repudiation, and privacy assurance. However, with the tendency
for more distributed and multi-stakeholder networking archi-
tectures in next-generation networks, the management process
of such SSLAs will be challenging due to the diversified secu-
rity vulnerabilities and complexity of underlying technologies.
Although blockchain is emerging as a platform to facilitate such
distributed SSLA/SLA management frameworks, its currently
available consensus mechanisms are more generic. Still, they need
to improve in terms of applying in multi-stakeholder networks.
Therefore, this paper presents a novel consensus mechanism
called Proof-of-Monitoring (PoM) for a blockchain-based novel
SSLA management framework. Moreover, we provide details
about the prototype implementation of our proposed consensus
algorithm and SSLA management framework. It is proven
by comparing our proposal with the other existing solutions
that our solution outperforms in many aspects, such as energy
consumption, computation cost, and security features.

Index Terms—Blockchain, Secure Service Level Agreements,
Consensus Algorithm, Network monitoring, Smart Contracts

I. INTRODUCTION

A service Level Agreement (SLA) is a contractual finan-
cial agreement between a service provider and a customer.
In the telecommunication context, it defines as a form of
assurance that the Communication Service Providers (CSPs)
deliver the diversified communication service requirements
of Communication Service Customer (CSC), aligning with
service compliance standards (3GPP TS 28.530). Hence, it
is of utmost importance to any CSC. SLA violations may
degrade the expected service quality, where the user has to

Nisita Weerasinghe and Mika Ylianttila are with the Centre for
Wireless Communications, University of Oulu, Finland. e-mail: first-
name.lastname@oulu.fi

Raaj Mishra is with the Dell Technologies, India. e-mail:
raaj2045@gmail.com

Pawani Porambage is with VTT Technical Research Centre, Fin-
land and University of Oulu, Finland. e-mail: pawani.porambage@vtt.fi,
pawani.porambage@oulu.fi

Madhusanka Liyanage is with the School of Computer Science, University
College Dublin (UCD), Ireland and the Centre for Wireless Communi-
cations, University of Oulu, Finland. e-mail:madhusanka@ucd.ie, madhu-
sanka.liyanage@oulu.fi

encounter unexpected experiences and consequences for the
paid services, which eventually negatively impact the user
experience. Traditionally, end customers must follow manual
and time-consuming procedures to prove the evidence of
these SLA violations. Hence, a fully automated SLA system
is required to support continuous monitoring and boost the
user satisfaction level. Additionally, a trustworthy guaranteeing
platform must monitor service deliveries and maintain fairness
between the customer and SP. Furthermore, SLA includes
measurable metrics to ensure Quality of Service (QoS) [1],
while there is an urge for security assurance of the service
delivery. Hence, researchers are working on the upcoming
Secure Service Level Agreements (SSLAs) concept. SSLA
specifies the security-oriented requirements required to assure
the expected level of security. Essentially, the security features
such as confidentiality in different dimensions, the integrity of
transaction records, and the availability of persistent services
are a few of the critical security requirements anticipated in
the SSLAs [2].

The limitations encountered in most state-of-art solutions
[3], [4] are SSLA monitoring party functions as a centralized
entity, which inherits default challenges such as a single point
of failure and is prone to network attacks (e.g., Distributed
Denial of Service (DDoS)). Still, not much research has been
carried out in the area of SSLA. However, more research has
been done in the area of SLA. Therefore, we examined SLA-
based state-of-art solutions.

To address the limitations encountered in conventional SLA
systems, one of the vital approaches commonly researched is
the adaptation of blockchain technology. It can be incorporated
to automate monitoring and improve trust across every 5G
service delivery. Blockchain can convert the architecture from
a centralized to a decentralized one and execute manual agree-
ments via smart contracts. Every transaction is recorded in the
distributed ledger to ensure non-repudiation [5]. Furthermore,
miners process transaction validation to guarantee immutabil-
ity within blockchain records and restrict non-authorized par-
ties from tampering with the data within the blockchain [6].
Therefore, we propose to incorporate blockchain technology
into our research.

However, state-of-the-art blockchain-based solutions [7], [8]
still have challenges, such as high blockchain operational costs
and energy data silos. For the deployment of blockchain, the
tenant nodes should have the capability to perform extensive
computations to reach a consensus result. However, many

2

resource-constrained devices will struggle to achieve that,
making it impossible to adopt blockchain technology by such
devices. Massive amounts of energy and time will be wasted
where comparable results can be obtained with simpler con-
sensus algorithms. In addition to that, the existing consensus
algorithms focus on achieving consensus as an independent
task, which is entirely irrelevant to the services obtained from
the blockchain. Therefore, a customized consensus protocol is
advantageous for efficient blockchain integration. Therefore,
the room is still available to leverage the concept and develop a
blockchain-based system. In our proposal, both the limitations
of non-blockchain and blockchain-based SLAs/SSLAs are
expected to be rectified.

In particular, the key contributions of our work are as
follows:

• Propose blockchain-based SSLA management framework
• Propose novel cost and energy efficient consensus mech-

anism, called Proof-of-Monitoring (PoM), which is cus-
tomized for SSLA management applications

• Evaluate the performance of the proposed system in a
simulated environment and confirm the viability through
a prototype implementation

• Evaluate the correctness of the proposed consensus pro-
tocol by performing formal modeling and formal verifi-
cation

The rest of the paper is outlined as follows: Section II
provides background knowledge on SLA/SSLA and different
technologies used. III examines existing works while Sec-
tion IV introduces novel blockchain-based SSLA architecture.
Section V proposes a novel consensus algorithm. Section VI
carries out numerical simulations to evaluate the performance
of the proposed consensus protocol and to compare it with
existing systems. Section VII presents the prototypical im-
plementation of the proposed consensus algorithm and SSLA
management system. Section VIII discusses the experimental
results. Section X compares the proposed model with exist-
ing systems and discusses the limitations of the proposed
approach. Section IX defines the formal model of the proposed
consensus protocol, verifies its properties, and analyzes its
results. Finally, Section XI concludes the paper.

II. BACKGROUND

This section discusses the core concepts of SLA/SSLA,
the challenges of both blockchain and non-blockchain-based
SSLAs, and the related technologies used throughout our
study.

A. Fundamentals of SLA/SSLA

SLA is a legal agreement containing negotiated services
between consumers and service providers. Services define
based on multiple Service Level Objectives (SLOs). SLOs
represent quantifiable metrics with values. The primary expec-
tation of establishing a SLA is to ensure the defined SLOs are
met. Furthermore, SLA focuses more on leveraging the QoS,
while SSLA concentrates on improving the expected level of
security.

The life cycle of the SLA [9] is generally divided into five
phases as follows: (1) Identification of capacities of SP and
definition of requirements of customer (2) SLA negotiation
between customers and SP (3) Resource provision and service
activation (4) SLA monitoring, validating, reporting and vio-
lation detecting (5) SLA assessment with SP(service quality,
key issues) and customer (service experience and management
of requirements). Our target is to advance the fourth phase of
the SLA’s lifecycle.

An example of a security SLO is the Packet Loss Ratio
(PLR), defined as the ratio of the number of data packets
lost to the total number of packets a network node should
have forwarded. Packet losses usually occur due to channel
errors or network congestion. This metric is typically asso-
ciated with QoS considerations, and the amount of tolerable
packet losses (e.g., 1% or 5%-10%) depends on the type of
data being sent. In the context of network security, packet-
dropping or blackhole is a type of denial-of-service (DoS)
attack where a network node drops packets that it should not
have. A DoS attack can happen at different layers, e.g., the
application layer or network layer. If a node repeatedly drops
packets, that indicates potential malicious behavior, leading to
communication unavailabilities for benign users. Furthermore,
the lower the PLR, the higher the reliability and availability
of the service against security threats.

B. Potential challenges of SLA/SSLA management systems

The most significant probable challenges related to
SLA/SSLA management are described below.

1) Single Point of Failure: The current systems are primar-
ily aligned with centralized deployment architecture, which
causes several limitations. For instance, being vulnerable to
DDoS attacks, which makes the service unavailable by at-
tacking the centralized services [10]. In addition, centralized
storage, such as classical database systems, can expose data
to malicious parties.

2) Transparency: There is a potential for resource providers
to violate pre-established SSLAs and raise discrepancies [11].
Hence, the lack of transparency in the current system makes
traceability harder. These problems make the service delivery
unsatisfactory to the customer, resulting in losses to the
service providers. Furthermore, the dispute resolution process
becomes exhaustive and will incur overheads for all parties.

3) Scalability: The number of tenants and operators con-
nected to the industrial ecosystems will expand with the com-
plexity of future telecommunication applications. Especially
the future industrial integration of IoT generates massive
demand for 5G service delivery with diversification [12].
Hence, handling exponential load is challenging with state-
of-the-art centralized architectures in future scenarios.

4) Lack of Reliable Monitoring Data: Due to obvious
reasons, we cannot always be certain that a third-party moni-
toring solution always provides reliable data. Some reasons
are their tendency to suffer from a single point of failure
and the possibility to be compromised easily because of being
centralized.

3

5) No Automated Violation Detection: Traditional methods
do not support automated SSLA violation detection and com-
pensation methods. Customers must follow a manual and time-
consuming verification and resolution process to claim for a
violation (e.g., via e-mails).

C. Potential challenges of blockchain-based SLA/SSLA man-
agement systems

Existing blockchain-based SLA/SSLA suffers from high
latency, high cost, high computational overhead, and resource
wastage. Extra delays are caused by the time-consuming
execution of the mining process (e.g., Proof of Work (PoW)).
Unnecessarily expensive for some because of favoring the
wealthier participants (e.g., Proof of Stake(POS)). Excessive
computational overhead, high energy consumption, and re-
source wastage because miners have to perform a computation-
ally intensive mining task (e.g., PoW). Miners must put much
effort into non-value-added tasks such as hash calculation
(e.g., PoW) or stake management (e.g., PoS). Hence, it is
evident that these consensus protocols suffer from different
challenges. Furthermore, although the adaptation of private
blockchain networks might favor addressing these issues, it
is more centralized than public networks.

In a nutshell, the main task of the SLA/SSLA management
application is to ensure that the SP meets obliged service stan-
dards. A fair, trustworthy, and automated platform is required
to monitor whether the expected standards are met. For this,
numerous blockchain solutions have been introduced already.
However, energy-efficient and fully decentralized blockchain
solutions are still yet to be introduced.

Hence, it is optimal to design a consensus protocol with
a mining task that complements its application’s primary
function to avoid the aforementioned issues. As a result, the
energy and resources are not wasted on non-value-adding
tasks. Instead, they are utilized for the core service of the
application.

D. Pervasive Authentication Protocol and Key Establishment
(PAuthKey) scheme

PAuthkey protocol is a lightweight authentication and key
Establishment mechanism proposed for resource-constrained
WSNs in IoT applications [13]. It mainly comprises two
phases: registration and authentication phase. In the registra-
tion phase, the sensor node must acquire a certificate from its
cluster head which they assume to be the Certificate Authority
(CA). Initially, the sensor node generates a random number
ruϵ[1, ..., n − 1] to compute Elliptic Curve (EC) point Ru as
given in equation 1 and send the value to CA along with
certificate request.

Ru = ruG (1)

Note that the EC domain parameters defined in this paper
follow the standard elliptic curve equation over the finite field
Fq is y2 = x3 + ax + b, where 4a3 + 27b2 ̸= 0, variables a
and b are coefficients, G is the generator point, and integer n
is the order of the curve.

Upon receiving the certificate request. CA generate random
number rCAϵ[1, ..., n − 1] and calculates implicit certificate
Certu, e, s respectively as follows, Let dCA be the private key
of CA.

Certu = Ru + rCAG (2)

e = H(Certu) (3)

s = erCA + dCA(modn) (4)

CA responds to the node by sending a message including
Certu and s. Then, the node can generate e using the equation
and the same hashing function that CA has used. Thereafter,
the node can calculate its private key du and public key Qu as
follows.

du = eru + s(modn) (5)

Qu = duG (6)

Further, [13] proves that Qu can also be calculated using
the below equation.

Qu = eCertu +QCA (7)

E. Shamir’s Secret Sharing (SSS) scheme

To develop a novel consensus algorithm, we intend to use
the key-sharing scheme proposed by Shamir [14]. It is a
process in which a secret key (S) is split into n parts, known as
shares. The combination of these shares re-creates the original
key. The minimum number of shares required to restore the
key is known as threshold k. Therefore, SSS is defined as a
(k, n) threshold scheme. This technique is ideal in a trustless
environment such as a blockchain where the key can be
distributed over many nodes. SSS is built based on polynomial
interpolation. Note that, Size of finite field pϵP : p > S, such
that ai < p , a0 = S where we select k− 1 random elements,
a1, ...ak-1 from a finite field of size p. The polynomial is
constructed as follows,

f(x) = a0 + a1x+ a2x
2 ++ ak-1x

k-1 (8)

Generate n points (i, f(i)) where i = 1, ...n, from f(x)
and distribute these points among nodes. A node who has
captured k of these points are able to rebuild the f(x). In our
scenario, we are focused only in finding the S which can be
identified as a0 in the f(x). Hence, reconstruction of entire
polynomial is unnecessary to calculate a0. It can be generated
using following formula.

f(0) =

k−1∑
j=0

yj
k−1∏

m=0,m ̸=j

xm

xm − xj
(9)

4

III. RELATED WORKS

Up to date, various approaches are evolving to investigate
across different avenues to cater to the diversified requirements
of the SLA context at present. Out of the phases of the SLA
lifecycle, researchers have been most focused on the monitor-
ing phase, then the negotiation phase and least concentrated on
violation management and reporting [15]. Philipp et al. [16]
proposes a SLA model to support the negotiation phase by
permitting dynamic changes to multiple service levels during
the deployment phase of an SLA. Sanjay et al. [17] propose
a trust model for SLA monitoring to support the assessment
phase. Eduardo et al. [4] introduce an architecture comprising
multiple software agents to identify SLA breaches and a
third-party auditor to avoid conflict of interest between SP,
contractor, and client. The proposed approach permits gath-
ering SLA metrics from each stakeholder and analyzing the
deviations and demand for solutions. However, this proposal
lacks transparency by relying on external services from third
parties.

Hiroki et al. [7] proposes a blockchain-based platform to
automate SLA contract enforcement. However, the proposal
does not consist of a system to analyze the credibility of SLA
breaches. Ke et al. [18] proposes a blockchain-based auditing
scheme to preserve the privacy of SLA of network slicing
and execution of punishments based on auditing results. Rohit
et al. [19] introduces a blockchain-based approach to detect
SLA breaches and analyze their root causes in a multi-cloud
ecosystem. Another interesting piece of work has been done
by Huan et al. [8] with the introduction of a decentralized
witness model to detect SLA violations. Nevertheless, all these
proposed solutions expend high costs and computational over-
heads for mining tasks which need to be minimized. This is
due to the fact that most of these state-of-art SLA blockchain-
based solutions suffer from a lack of an application-specific
consensus.

Alemany et al. [3] presents a security SLA manager to
guarantee the security of end-to-end network slices. Its core
component is the SSLA Manager, which functions as a cen-
tralized entity. It tends to be compromised easily, leading to
the single point of failure, service unavailability. In addition,
it cannot guarantee the transparency of the service delivery.
However, this is the only state-of-art that has significantly
contributed to developing a security-based SLA framework.
Nevertheless, there are significant modifications required to
improve the entire system.

Only a few works have been carried out to ensure the
correctness of novel consensus protocols. For instance, Hamra
et al. [20], Wai Yan Maung Maung et al. [21] present
formal models built using CSP# and verified using PAT
model checker. While they have inspired our formal model,
the proposed consensus protocol fundamentally differs from
theirs.

Therefore, there is a demand for a proper blockchain-based
SSLA management system and, to complement that, a custom-
built application-specific consensus algorithm.

IV. PROPOSED BLOCKCHAIN-BASED SSLA
MANAGEMENT FRAMEWORK

The main objective of our proposal is to invent and execute
a zero-touch security-oriented SLA framework that guarantees
trustworthiness, accountability, and security in delivering com-
munication services at low cost and low energy. Hence, we will
require real-time network data from trustworthy and authentic
sources to devise a sustainable security approach. Our system
uses a decentralized blockchain network architecture where
nodes can voluntarily deploy their network sensors in the
wireless channel that the client and SP communicate. Then
blockchain nodes can capture the data and feed it to the
blockchain service layer. Our system introduces a mecha-
nism for blockchain nodes to earn revenue for their resource
investment and network monitoring. Further, our approach
proposes a method to maximize the profits of nodes that
provide correct data continuously and, at the same time,
reduce the dependency on nodes who report false information.
Moreover, the occurrence of a violation is considered based
on the majority vote of the monitoring nodes. Accordingly,
the trustworthiness and reliability of the monitoring data are
guaranteed. However, to empower an economic model with
less computational overhead, our framework proposes a use
case-oriented consensus algorithm where the blockchain nodes
do not have to perform extra work to participate in the consen-
sus. The high-level architecture of the proposed blockchain-
based SSLA management framework integrated with a novel
consensus algorithm is in the Fig.1.

The performance features of the SP are monitored and
evaluated precisely with feedback from the deployed nodes
in the 5G core networks. Furthermore, the consumer end has
been enabled to report performance feedback and service level
compliance through the blockchain network. The alignment of
performance with the SSLA has been logged in the blockchain
to ensure non-repudiation. Then no party could upload false
data or alter data within the blockchain network.

Blockchain integration ideally facilitates the dynamic and
adaptable enforcement of service agreements through smart
contracts. Smart contracts’ decentralized and dynamic nature
enforces the dynamic deployment of contractual agreements
across the ecosystem. Essentially, blockchain is decentralized
and ensures the decentralized service operation by distributing
the load between multiple collaborative nodes. Therefore, it
caters to the diverse service requirements of stakeholders with
less delay.

Transparency of agreements is enabled by encoding SSLAs
in smart contracts. The transparency of smart contracts ensures
the terms and conditions of the contract are clear and under-
standable, as well as not deviate from the pre-agreed terms
and conditions. Therefore, non-repudiation is guaranteed.

The decentralized ledger of blockchain incorporated with
interlinked cryptographic verification, avoids the possibility
for a data in the database to be tampered. Furthermore, it
ensures that the execution of sequential events in the SSLA is
compliant and in order. Moreover, blockchain’s decentralized
operational capability eliminates the single point of failure and
tolerates the scaled-up transaction volumes.

5

Key
Distribution

Key
Recovery

Block
Generation

Block
Verification

Key
Generation

Novel Blockchain System

User
Authentication

Policy
Manager

Lifecycle
Manager

Violation
Monitoring

Engine

Compensation
Calculator

Reputation
Management

Blockchain Services

NSM
5G MNO Core Network

MEC Server MEC Server

Industry 4.0 University

NSM
5G MNO Core Network

MEC Server
MEC Server

Smart Hospital
IoT Services

Blockchain
Layer and
Internet

Core
Network

Edge
Layer

End
Verticals

Internet

Blockchain Nodes

Network Sensors

SSLA Management Framework

Third-party
Sensors

Third-party
Sensors

Third-party
Sensors

Smart Hospital

University

Smart Retail

Key share

Fig. 1: High-level architecture of the proposed blockchain-based SSLA management framework

A. Key components of the proposed framework

We determined the main functional modules of the SSLA
framework and their primary services. Fig. 2 represents key
service modules of the proposed SSLA management frame-
work and its interaction with the stakeholders. The stake-
holders (client, SP) and monitoring nodes invoke back-end
(blockchain) services through an API. The primary services
of each functional module are discussed below.

(1)

Client

(1)

Service Provider (SP)

W
eb

 A
pp

lic
at

io
n

(1)

 A
PI

(1)

 A
PI

Lifecycle Manager

Agreement initiation

Agreement termination

Violation Monitoring Engine

(5)

Monitoring Initiation

Violation Reporting

Perform billing

Payment transfer

Store details of clients,
SPs, blockchain nodes

Calculate rating score
for blockchain nodes

Calculate rating score
for SPs

W
eb

 A
pp

lic
at

io
n

(6)

 API

Blockchain-based SSLA Management Framework

(4)

(7)

(8)

SLA Establishment

(3)

(2)

(2)

Compensation Calculator

User Authentication Reputation Management

 Policy Manager

(9)

(9)(10)Metric Conversion

Track record of
participants

Fig. 2: Fundamental services of the proposed blockchain-based
SSLA management framework

User Authentication: This service is responsible for man-

aging accounts and keeping records of SPs, customers, and
monitoring nodes. Stakeholders register to the proposed plat-
form to become accountable for receiving services. Likewise,
the monitoring nodes must register with the system before
initiating the network monitoring. Initially, participants enter
their credentials through the web application. The API passes
the data to the blockchain and invokes the User Authentication
service. It stores the credentials in the distributed ledger and
links the wallets of each user to their accounts. Furthermore,
this service module invokes whenever a registered stakeholder
requires to log into the system, and it will grant access per-
mission by retrieving the user information from the distributed
ledger.

Policy Manager: The client can select a SP from our web
application and send its desired security requirements to the
selected SP. Then, the SP generates a SSLA draft and sends
it to the client. The client can moderate selected requirements
and request reviews from the SP during the negotiation pe-
riod. SP can review and revise the SSLA. This process will
run recursively until the client is satisfied. The client can
approve the agreement by sending the service charge to the
blockchain. Then, the blockchain generates an event to notify
SP and invokes the Policy Manager service module. The Policy
Manager translates high-level metrics into measurable metrics.
For example, if the high-level metric is PLR, then translated
measurable metrics are the number of packets transmitted and
dropped over a period. It stores measurable metrics along with
other SSLA parameters in the blockchain and sends a SSLA
deployed notification to the Lifecycle Manager. Moreover, it
transfers the service charge to the Compensation Calculator,
where the fee will be held until the SSLA termination stage.

SSLA agreement includes the following negotiated parame-

6

ters such as the address of SP, address of the customer, service
fee, validity period, monitoring period (= Period at which the
monitoring node reports monitored data to the blockchain),
SLO metrics, SLO values, allowable violation count per SLOs,
priority weightage of SLOs, blockchain fee weightage. Note
that the priority weightage is a percentage that can be set to
adjust the priority levels among SLOs of SSLA, and it depends
on the criticality level of the security metric in question. The
blockchain fee weightage is a percentage fee that is distributed
among blockchain nodes who correctly monitor the network
(e.g., 0.1 %).

Lifecycle Manager: This functional module handles both
SSLA initiation and termination processes. It always refers
to the contract period of the stored SSLAs. The Lifecycle
Manager invokes Violation Monitoring Engine whenever the
starting period of any SSLA reaches and terminates the
contract when the contract period expires or discovers a
SSLA policy infringement. In addition, it is responsible for
notifying the SSLA termination to Compensation Calculator
and Reputation Management modules.

Violation Monitoring Engine: The main task is to manage
network monitoring activities. Peer nodes in the blockchain
network monitor the packets transferring between each client
and service provider pair via the wireless communication
channel. Each node has the freedom to install a preferred
network sensor and monitor the measurable metrics of each
security metric in SSLAs, during the specified monitoring
period in SSLA. Next, they feed the monitored data to the
blockchain at the end of the monitoring period. Then, the
Violation Monitoring engine calculates the values for each
security metric of SSLAs and checks whether the SP meets
the SLOs. In our system, we declare a violation if more than
50% of the active monitoring nodes input data, confirming
a violation. Subsequently, the Violation Monitoring engine
invokes Compensation Calculator and Reputation Management
modules. Additionally, It notifies the Lifecycle Manager to
terminate the SSLA when the number of violations conducted
by a specific SP exceeds a certain pre-defined threshold.

Compensation Calculator: This entity mainly performs
billing activities at the end of the monitoring period. It divides
the service fee among SP and blockchain nodes based on their
service delivery. Blockchain nodes refer to the winning miners
and violation reports (=blockchain nodes who have correctly
reported violations). A blockchain fee is a reward offered to
blockchain nodes for allocating their resources throughout the
monitoring period. Further, it calculates the losses incurred by
the user for service failures.

The client is liable to deposit the service fee at the es-
tablishment of SSLA. In the SSLA termination stage, our
system distributes service fee percentages among SP, winner
miner, and violation reports. Also, the customer will receive
a portion of it as compensation if the violation count exceeds
the allowable number of violations.

Initially, the system allocates a portion of the service fee
to the blockchain nodes at every Tmonitoring period, and it
calculates the blockchain fee F blockchain as follows. Let service
fee be F service and blockchain fee weightage be p.

F blockchain = F service × p× Tmonitoring

A certain amount of the blockchain fee collects as an
incentive for winning miners. The rest divides among the
violation reporters based on their reputation score. The one
which has the highest reputation score receives the highest
revenue. Therefore, it is evident that providing accurate data
all the time will maximize their profit.

The system calculates the customer compensation relating
to ith SLO, F (i)compensation as follows, Let violation period
relating to ith SLO be T violation(i), priority weightage of SLO
be qi, the total number of SLOs per SSLA be n.

F compensation(i) = (F service − F blockchain)×
T violation(i)

Tmonitoring
× q(i)

Note that T violation(i) is the total time within the monitoring
period during which a violation occurred corresponding to the
ith SLO.

Our system computes the total compensation fee per mon-
itoring period as below,

F compensation =

n∑
i=1

F compensation(i)

Subsequently, F compensation amount is transferred to the cus-
tomer’s wallet at the SSLA termination stage. The rest of the
funds are credited to SP, F SP

F SP = (F service − F blockchain)− F compensation

Reputation Management: The primary function is to
compute rating scores for the blockchain nodes and SPs at
every monitoring period and agreement termination session,
respectively. The reputation score of each violation reporter
increments while the reputation scores of non-violation re-
porters decrements if the system confirms a violation. The
blockchain node is discarded from the network if its reputation
score exceeds a certain threshold. Furthermore, the updated
rating scores of every SP displays on the web application at
the stage where a customer is selecting a SP. Hence, it eases
the customer to choose an optimal SP.

B. Workflow of the proposed SSLA management process

The workflow presents a sequence of steps from the gen-
eration of a SSLA to the termination of a SSLA. Fig. 3, Fig.
4, and Fig. 5 illustrate the flow of the initiation phase, moni-
toring phase, and termination phase of the SSLA management
framework, respectively. The vital steps of the three phases
are explained below.

1) Initiation Phase: Initially, a client selects a SP based on
his/her needs and sends the security requirements to the SP.
SP is accountable for generating a SSLA draft considering
the user input. Then SP will send the created SSLA to the
customer for his/her approval. The customer has the privilege
to request modifications, and SP is obliged to review and revise
the defined terms in SSLA until he/she is fully satisfied. Hence,
the SSLA negotiation process follows a recursive process.

7

Once the client is pleased with the received SSLA version,
he/she can provide his/her consent by depositing the agreed
service charge defined in SSLA.

Fig. 3: SSLA initiation phase

2) Monitoring Phase: The Policy Manager converts the
SLOs into measurable metrics and stores them along with
other SSLA parameters in the blockchain. Then it sends
the SSLA deployment notification to the Lifecycle Manager.
When the starting period of the contract reaches, the Lifecycle
Manager triggers the SSLA initiation process by sending
a SSLA initiation notification to the Violation Monitoring
Engine. Then, Violation Monitoring Engine commences moni-
toring the wireless channel, which the client and SP connected,
with respect to the measurable metrics. Subsequently, it reports
any infringements found to Compensation Calculator and
Reputation management in every monitoring cycle. The Com-
pensation Calculator module computes the compensation for
the customer, penalty for SP, and service fee blockchain nodes.
The Reputation Management calculates reputation scores for
blockchain nodes. If the reputation score of a blockchain node
reaches a certain threshold, it will be eliminated from the
system.

3) Termination Phase: The termination phase mainly in-
cludes the termination of SSLA monitoring and settlement of
final payments.

SSLA termination happens if any of the following actions
are triggered, (1) the Lifecycle Manager receives the SSLA
termination request from the Violation Monitoring engine that
it has encountered that the SP has exceeded the maximum
allowable number of violations (2) the SSLA met the contract
expiration date. Subsequently, the Lifecycle Manager sends the
SSLA termination notification to Compensation Calculator and
Reputation Management modules. The Compensation Calcula-
tor transfers the service charges for SP and blockchain nodes
if no violation is detected. If not, it compensates the client
by transferring the compensation fee (a portion of the service

Fig. 4: SSLA monitoring phase

charge). Finally, the Reputation Management calculates and
updates the reputation score of the SP based on their violation
status.

Fig. 5: SSLA termination phase

V. PROPOSED PROOF-OF-MONITORING CONSENSUS
ALGORITHM

This section proposes a novel consensus algorithm named
Proof-of-Monitoring, customized to the SSLA management
application. Its principal concept and the key phases are
explained explicitly in this section.

A. Principal concept

The consensus protocols of state-of-art blockchain solutions
pose intensive computational demands which require a large
amount of energy for each miner to maximize their chances
of becoming a winning miner. Hence, our system proposes

8

an innovative approach to remove this unnecessary overhead
from the system by designing a novel consensus specific to the
SSLA management system. The idea is to make the mining
task the same as the main work of the SSLA management
application, network monitoring.

The novel consensus algorithm utilizes both PAuthkey pro-
tocol [13] and Shamir’s Secret Sharing scheme [14] technolo-
gies. The main phases of the proposed approach are depicted
in Fig. 6 and explained explicitly with their corresponding
pseudo-codes.

B. Key phases of the PoM mechanism

1) Key Generation: To develop the consensus algorithm,
we incorporate the basic operations introduced for the au-
thentication and key establishment phases of the Wireless
Sensor Networks (WSNs) in the PAuthKey protocol [13].
We program its computations in a black box of the miner
software without exposing them to any blockchain nodes.
The internal calculations include the generation of Elliptic
Curve (EC) Ru point, implicit certificate Certu and the private
key du. The algorithm 1 shows the mathematical operations
performed to generate them. Note that EC domain parameters
such as generator point G, Private and Public key of certificate
authority dCA, QCA, Curve order n are predefined.

Algorithm 1 Key and Certificate Generation
Input: Generator point (G), Private and Public key of

certificate authority (dCA, QCA), Curve order (n)
Output: Private key (du), Implicit certificate (Certu)

1: ru := a random number between 1 and n− 1
2: Compute EC point Ru = ruG
3: rCA := a random number between 1 and n− 1
4: Generate Certu = Ru + rCAG
5: Integer e← Hash of Certu
6: Integer s = erCA + dCA(modn)
7: Generate du = eru + s(modn)

2) Key Distribution: The proposed consensus protocol con-
catenates the previously computed du and Certu using the
PAuthKey protocol. Let’s called the combination of du and
Certu as Secret(S). S is divided into n shares using the
Shamir Secret Sharing approach. Next, the mining application
reveals random key shares to each node, and nodes can
broadcast the received share to the wireless channel where
SP and client are connected via a known port which they
have already declared when joining the network. Note that
the system shares the public key QCA with all the blockchain
nodes, which will be necessary for the later calculations in the
block generation phase. Algorithm illustrates the pseudo-code
related to the key distribution phase.

3) Network Monitoring and Key Recovery: The designated
task for the miners is to calculate public key Qu by recovering
du and Certu. Hence, nodes must attentively listen to the
service ports, capture each key share, and reconstruct the
desired parameters. The system rewards the one who com-
pletes the task with incentives, encouraging the blockchain
nodes to find the solution by investing their resources to the

Algorithm 2 Key Distribution
Input: Private key (du), Implicit certificate (Certu),

Number of active nodes (m), Number of shares (n), Threshold
(k)

Output: n pieces of (du), n pieces of (Certu)

1: S = {du,Certu }
Require: Size of finite field pϵP : p > S, such that ai < p ,

a0 = S where
2: Sample k − 1 random numbers {a1, a2...., a(k-1) } from a

finite field of size p
Require: n ≥ 3
Ensure: n = 2k − 1

3: for i = 1 to k − 1 do
4: ai
5: end for
6: Generate the polynomial f(x) = a0 + a1x+ a2x

2 ++
a(k-1)x

(k-1)

7: Generate n points from f(x) and store in an array
{D0, D1...., D(n-1) }

8: for j = 1 to n do
9: Dj-1 ← ((j, f(j))modp)

10: Array Y [j]← Dj-1

11: end for
12: Generate a portion of S in each active node
13: for q = 1 to m do
14: rq ← a random number between 1 and n
15: Reveal n point Y [rq]
16: end for
17: Each active node broadcasts the received portion of S to

all other active nodes
18: Reveal G, QCA ▷ Required for later computations

maximum. Miners can recover the key by capturing its shares
while monitoring the network for SSLA violations. Algorithm
3 shows the pseudo-code related to the key recovery stage.

Blockchain nodes can store the network monitoring data
locally in off-chain storage (InterPlanetary File System (IPFS)
and sends the pointer (the hash of the monitored data) to the
blockchain. When necessary, these data can be accessed later
at the blockchain by retrieving the data from the off-chain
database. This approach prevents unnecessary ledger growth
[22].

4) Block Generation: The proposed consensus protocol
declares the node which discovers Qu, Certu and du first as
the winner miner. The winning miner gets the chance to create
the next block of the blockchain. Fig. 7 depicts the block
structure that the winner miner has to create. The Block header
includes the version, timestamp, hash of the previous block,
hash of the Merkle root, and RESULT (which is the solution
discovered from the mining process). RESULT = (Qu digitally
signed by du) + signature + Certu. The body of the block
header contains the data pointer to the network monitoring
data, blockchain service invocations, and service fee payments.
Later, the winning miner broadcasts the generated block to the
peer nodes for verification.

9

MinerSoftware

Private
Key

Implicit
Certificate

Internal
Computations

Generate

SplitSplit

1 2 3 n 1 2 3 n

Key shares

Key shares

Key shares

Key share

1 Miner software generates
key and certificate shares

2 Miners broadcast received key/ceritifacte shares to the network one by
one at a given frequency

2 n n-1
Tx key shares index

Task:
1.Recover key and certificate
2.Calculate public key

Miner Miner

Miner
Network Sensors

Miner Software

4 Winner miner creates a new block
and broadcast it to the network

Data pointer

Transaction data

?

New block

Public key digitally
signed using
private key

EC Certificate

5 Other miners validate the new block
and solution

Winner miner awarded
with block rewards

Verified block is added
to existing blockchain

RESULT

3 Miners monitor the network to capture
 key and certificate shares

Key share

1 2 3 t
Captured key
shares index

Winner Miner
Network

monitoring
data

Off-chain
DBRESULT

1 5 n-2
Tx key share index

8 4 n-5
Tx key share index

Miner

Fig. 6: The workflow of the proposed PoM consensus protocol

Algorithm 3 Key Recovery
Input: k pieces of S{(x0, y0), (x1, y1)...., (xk, yk) }
Output: Recovered du, Certu, Computed Qu

Require: l = 1, f(0)
1: for j = 0 to k − 1 do
2: for m = 0 to k − 1 do
3: if m ̸= j then
4: l← l ∗ (xm)/(xm − xj)
5: end if
6: end for
7: f(0)← f(0) + (l ∗ yk)
8: p = 1
9: end for

10: f(0)←S={du,Certu}
11: Compute public key using du,Certu
12: Qu = duG
13: or Qu = e ∗ Certu +QCA

5) Block Verification: When the rest of the miners receive
the new block, they can find the RESULT solution containing
a digitally signed Qu, the signature, and Certu in it. Next,
they can calculate the public key Qu using Certu to verify
the signature sent by the winner miner. If the verification is

Fig. 7: Block structure of the proposed PoM

successful, the rest of the peer nodes add the verified block
to the blockchain, and the winning miner receives incentives.

10

The proposed system allocates a portion of the service charge
as incentives (refer IV-A). Algorithm 4 shows the pseudo-code
of the key verification approach.

Algorithm 4 Block Verification
Input: Digitally signed Qu, signature, Certu
Output: successful or unsuccessful

1: Calculate Qu using Certu
2: Qu = e ∗ Certu +QCA
3: ECDSA signature verification
4: Qu

’ ← decoded message using Qu

5: if Qu
’ == Qu then

6: Verification is successful
7: else
8: Verification is unsuccessful
9: end if

In conclusion, our consensus protocol is a cost-effective
and energy-efficient approach since it does not includes a
computationally intensive task to solve to achieve consensus.

C. Mining difficulty of the PoM mechanism

Every work-based consensus algorithm consists of a mech-
anism to adjust the difficulty levels of its defined mining
task, allowing control of block creation time, transaction
throughput, and competition between miners. In our case, the
difficult aspect is mainly regulated based on cryptography,
blockchain, and network parameters. Table I lists an estimation
of how different factors affect the difficulty of the mining task.

TABLE I: Analysis of mining difficulty of the proposed PoM

Category Parameter Impact on
difficulty

Cryptography

Key length of EC key/certificate
• Depends curve size

– Order of curve(n’)
∗ Curve co-factor (h)
∗ Order of subgroup

(r)
– Finite field Fq (where q

is prime)
– Field size

Increase

Threshold (k) Increase
Number of shares (n) Decrease
Key sharing frequency Decrease
Number of miners (m) Decrease
Key revealing probability Decrease

Mining resources
Computational power Negligibly

decrease

Network
Network latency Increase
Network bandwidth Decrease

The difficulty of recovering the key depends mainly on the
key size, number of shares, threshold, key sharing frequency,
and number of nodes. Obviously, with the increase in key
size, the number of key shares to be captured increases.
Similarly, setting the threshold to a higher value still increases
the number of key shares a miner node has to capture to

reconstruct the key. However, more key shares will be available
in the network to recover by increasing the number of shares
(which determines the number that the key is divided into)
while keeping the key size and threshold fixed. Therefore,
the availability of many shares in the network lowers the
recovery difficulty, while key size and threshold increase the
difficulty. In addition, with a lower key sharing frequency (the
duration a blockchain node must wait to send its next key
share), the completion of the mining task will be delayed.
Hence, the difficulty increases with the key-sharing frequency.
Nevertheless, having a more significant number of miner nodes
(=key distributors) grows the number of key shares in the
network, increasing the key recovery probability. Similarly,
the difficulty lowers by increasing the key revealing prob-
ability (willingness to broadcast its key share to other peer
nodes). This fact is elaborated quantitatively in a later section
VI-C. Furthermore, the time taken to solve the mining task
will be minimal when the computational power of a miner
node increases. However, the effect of computational power
is negligible on the difficulty since the mining task is not
computationally intensive. Moreover, the increase in network
latency and decrease in network bandwidth interrupt and delay
the process of miners distributing their keys and capturing keys
to become winner miners. As a result, the entire mining task
operation will get delayed. Therefore, high latency and low
bandwidth affect the difficulty aspect negatively.

VI. NUMERICAL ANALYSIS

We carried out multiple numerical simulations to evaluate
the performance of the proposed consensus PoM. This section
discusses the simulation models developed to assess the inter-
nal performance factors of PoM and compare PoM with other
traditional consensus protocols. The simulation tool used for
all the tests discussed in this section is MATLAB [23].

Simulation model 1 represents a wireless blockchain net-
work with N number of nodes. We evaluated the blockchain
performance metrics by varying N from 1 to 1000. Simulation
model 2 illustrates an estimation of energy consumption for
different blockchain architectures. Simulation model 3 exem-
plifies a blockchain network connected with m number of
miner nodes at the key distribution phase of the PoM, where
miner nodes broadcast and capture key shares. We instantiated
different instances of this model when m = 4,10,20, and 50. It
analyzes key recovering probability by varying key revealing
probability from 0 to 1.

A. Simulation Model 1: Inter-parameter comparison between
PoM and other conventional consensus mechanisms [24]

This subsection presents a quantitative analysis of the com-
munication impacts on blockchain performance metrics in a
wireless blockchain ecosystem. We compared our proposed
PoM consensus protocol with widely used consensus algo-
rithms in a SLA/SSLA ecosystem. Namely, PoW [25], [26],
[8], Raft [27], [28] and PBFT [29]. The comparison is made
with respect to several significant performance metrics such as
communication complexity [24], spectrum requirement [24],
security bound [24], and transaction throughput [24].

11

0 100 200 300 400 500 600 700 800 900 1000

Number of nodes N

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
m

p
le

x
it
y

PBFT

Raft

PoW

PoM

Fig. 8: Comparison of the communication complexity of
different consensus mechanisms [24]

1) Communication Complexity: Communication complex-
ity defines the number of communications between transmitter
and receiver [24]. Fig.8 exemplifies the communication com-
plexity of commonly used consensus protocols in a wireless
network. It is clearly visible that PBFT requires the highest
degree of communication 2N+N2. It is because all connected
nodes must communicate among others at their primary stages
of prepare, prepare and commit. On the other hand, Raft
and PoW depict the same pattern of requiring up to 2N
communications. In Raft, the communication complexity is the
summation of communications happening between followers
to the leader (uplink) and leader to followers (downlink),
which adds up to 2N . However, in PoW and PoM, 2N num-
ber of communications are required to broadcast the client-
transaction request and winner miner’s solution to all other
connected nodes. In addition, PoM requires communications
at the stage where each node (i.e., N) broadcasts its key
shares among peer nodes. Hence, at that point, N2 number
of communications are required. However, PoM triggers key
re-transmission if it finds no winner miners at a defined
interval. Therefore, the communication complexity of PoM
is rN2 + 2N , where r is the number of re-transmissions.
However, at the ideal stage, r = 1 makes the communication
complexity of PoM equal to N2+2N . Note that we considered
the ideal stages of each consensus protocol throughout this
comparison [24].

2) Spectrum Requirement: The required number of commu-
nication spectrum resources or the number of transmitter pro-
cesses in a wireless blockchain network refers to the spectrum
requirement [24]. A comparison is made among consensus
algorithms with respect to this regard and demonstrated its
results in Fig.9. The PoW model requires two broadcast
communications to transmit the transaction request and the
winner miner’s result. Hence, the overall spectrum requirement
of PoW is only 2, which is a constant value and does not
depend on the number of nodes. Similarly, PoM protocol
includes the transaction broadcasting and broadcasting the

winner node’s result to all peer nodes at the verification stage
(i.e., 2). In addition, each node transmits its key shares among
other nodes (i.e., N). Hence, the spectrum requirement of PoM
is N+2. The Raft model requires broadcasting transmission in
downlink (i.e., 1), and each follower node conducts a one-way
communication to the leader (i.e., N). Therefore, the spectrum
requirement of Raft is equal to N + 1. In PBFT, spectrum
resources are allocated for broadcasting transactions at the pre-
prepare stage (i.e., 1) and the communication between nodes
at prepare and commit stages (i.e., 2N). Hence, the spectrum
requirement of PBFT sums up to 2N+1, which is the highest
of all.

0 100 200 300 400 500 600 700 800 900 1000

Number of nodes N

10
0

10
1

10
2

10
3

10
4

S
p
e
c
tr

u
m

 R
e
q
u
ir
e
m

e
n
ts

PBFT

Raft

PoW

PoM

Fig. 9: Comparison of the spectrum requirement of different
consensus mechanisms [24]

3) Security Bound: It determines the maximum number of
faulty nodes (f) a consensus protocol can withstand [24]. For
PoW, the security bound is 2f + 1 due to the possibility that
more than 50% of the computing power within the blockchain
network can be acquired by a user, then the whole blockchain
jeopardizes. In PoM, more than 50% nodes should verify the
winner miner’s solution to generate a valid block. Hence, the
security bound of PoM becomes 2f + 1. In contrast, the
voting-biased consensus protocols consider faulty nodes as
“inactive” or “malicious” nodes transmitting false data within
the blockchain network. PBFT permits 1/3 of nodes to be
faulty, making security bound 3f+1. While, Raft can tolerate
50% faulty nodes, which results in security bound to be 2f+1.

4) Transaction Throughput: The transactions per second
metric measures the transaction throughput. Typically, proof-
based consensus algorithms such as PoW suffers a great deal
of low throughput compared to other typical consensus proto-
cols. Due to the time taken to conduct intensive computations
to achieve consensus is high. Although the mining task of
PoM instructs to carry out computations, it does not require
plenty of computational power to solve the puzzle. However,
in PoM, keys are transmitted at a given frequency, which
delays the mining process a bit. Therefore, we can consider
the security bound of PoM as “medium”. In contrast, the
transaction throughput of voting-based consensus algorithms

12

is excessively high [24].

B. Simulation Model 2: Comparison of per transaction energy
utilization [30]

Energy consumption per transaction of typical blockchain
architectures is roughly estimated in the paper [30]. To bring
PoM into this comparison, we estimated the value by mea-
suring the energy consumption for 100 transactions per block
and setting the difficulty level to 4 in our developed simple
blockchain network (refer VIII-B). Based on the experimental
results, we arrived at a magnitude of 18J per transaction.
Fig. 10 illustrates a comparison between different architectures
with regard to energy consumption. It is apparent that the
PoM can operate transactions at a low energy consumption
compared to Public Blockchain systems. Furthermore, in PoM,
a portion of the total consumption of Energy (18J) spends
on monitoring the network, which is the main functionality
of our SSLA management framework. To elaborate more on
that, PoM consensus can be achieved only by monitoring
the network, which is the primary function of the proposed
application. Therefore, it is clear that 18J of Energy (total
energy consumption of PoM per transaction) is insignificant
compared to other blockchain networks, which consume En-
ergy solely on the consensus. In our case, achieving consensus
is a byproduct of network monitoring.

Sim
ple server

Centra
lized system

Enterpris
e Blockchian

Proof-o
f-M

onito
rin

g

Public Blockchian N
on-P

oW

Public Blockchian PoW

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

A
p
p
ro

x
im

a
ti
o
n
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

tr
a
n
s
a
c
ti
o
n
 (

J
)

Fig. 10: Comparison of the energy consumption per transaction
for different architectures [30]

C. Simulation 3: Intra-parameter comparison of PoM

We analyzed the impact on key recovery by varying one
of the difficulty factors listed in Table I, which is the key
revealing probability. It is the probability that the miner nodes
willingly reveal their key shares with other peer nodes by
broadcasting the received key shares to the network. In Fig.
11, we plot the key recovering probability against the key
revealing probability, varying the number of miner nodes m in
the blockchain network while keeping the threshold k constant.

We can formulate the probability of successfully recovering
the key [31] as follows. Note that P is the probability of
revealing a key share, and 1 − P is the probability of not
revealing a key share to others.

PKeyRecovery =

m−1∑
i=k

p(i+1)(1− p)(m−(i+1)) (10)

Based on Fig.11, it is visible that with the increment of the
number of nodes, the potential to recover a key dramatically
increases. Due to the presence of many cooperative nodes who
share their received key shares. Another primary observation is
that when the key revealing probability rises with the number
of miner nodes, the key recovery rate escalates. That is because
of the existence of many nodes that are extremely willing to
distribute their key share among others. Hence, every node
gets the privilege of receiving a large number of key shares,
which ultimately helps with the key reconstruction. As a result,
it lowers the difficulty of the mining task.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Key revealing probability

0

0.2

0.4

0.6

0.8

1

1.2

K
e
y
 r

e
c
o
v
e
ri
n
g
 p

ro
b
a
b
ili

ty

m=4

m=10

m=20

m=50

Fig. 11: The impact of key share revealing probability on key
recovery probability

VII. PROTOTYPICAL IMPLEMENTATION

We developed prototypes separately for the two primary
modules proposed in this paper. Namely, (1) consensus proto-
col and (2) SSLA management framework. We have built our
own fully functional blockchain prototype from scratch and
integrated the proposed consensus protocol. Further, we have
executed the proposed SSLA management services on top of
the Ethereum test network. These two main implementations
are discussed explicitly in this section.

A. PoM

The prototype of the proposed system consists of a newly
developed blockchain program using NodeJS, which simulates
the behavior of the participating nodes. Fig. 12 shows the
experimental setup of the blockchain system. The program
has RESTful APIs, which interact with various blockchain
operations by the node, i.e., joining the blockchain network,

13

submitting transactions, fetching block information, mining
transactions, and submitting random key and certificate shares
in the network. The blockchain program is run on different
ports in the same system to simulate multiple nodes. The
nodes can join the common blockchain network by sending
an API request, which synchronizes the blockchain among the
participating nodes by broadcasting the chain.

Transaction
Pool

Stakeholders

Validate changes

Broadcast

changes

Validate changes

Ledger

synchronization

Validate changes

Fig. 12: Prototype setup for the PoM-based blockchain system

A background job is scheduled when a new node is added to
the network, which gets triggered every 20 ms. The job ensures
that the private key du and the certificate Certu are generated
using the previous block timestamp and are divided into parts
using the @zippie/secrets.js package, which uses Shamir’s
threshold secret sharing scheme in JavaScript. During the job,
a random part of both generated du and Certu is broadcasted
by each node across the network using the broadcast API.
The remaining nodes receive the broadcasted shares in a
frequency of 10 seconds and store them locally. The difficulty
of the system is set by increasing the number of shares to
be generated and the minimum number of shares needed to
combine them to successfully recover the du and Certu. The
system’s difficulty can increase by increasing the threshold of
shares required by the miner to retrieve the random key and
certificate successfully.

During the mining process, a mining job has been created
that checks if the threshold is reached to combine the shares
every 200 milliseconds. The nodes keep listening for more
shares if the threshold has not been reached yet to combine
the shares. If the threshold is reached, then Certu and du are
calculated using the shares. The mining node then calculates
the Public Key Qu and signs it using the private key du using
the Elliptic Curve Digital Signature Algorithm (ECDSA). The
miner then creates a new block that contains the timestamp,
transactions, the signature, Qu and Certu and broadcasts
information to all the other nodes for verification using the
receive-block API, and deletes the mining job. The nodes
receiving the block verify the signature using the public key Qu
and add the block to the existing blockchain. If the signature
has a mismatch, the block gets rejected.

B. SSLA management system

1) Prototype: We developed SSLA architecture on top of
a blockchain using Distributed Ledger Technology (DLT),
and we selected one of such open-source platforms like
Ethereum. We used the Rinkeby test network, an alternative
to the main blockchain, as the blockchain service in our

Front-end Application
(Dapp)

WalletApplication

Https

Customer

Https
Service Provider

Injected Web3

Ethereum
nodeEthereum

node

Ethereum
node

Ethereum Blockchain Network

Fig. 13: Prototype setup for the smart contract based SSLA
management framework

implementation. The functionalities of each module in the
blockchain layer of the proposed architecture (as shown in
Fig. 2) are programmed and executed via smart contracts.
Fig. 13 depicts the implemented proposed system model. Each
customer and SP is connected to a crypto wallet application (In
our implementation, we used Metamask) to perform cryptocur-
rency transactions and interact with the Ethereum blockchain
network. The foundation for the client application is an HTTP
server deployed in the local host using Node.js. Decentralized
Applications (DApps) run on a web browser configured with
the MetaMask plugin, which uses Injected web3. It essentially
connects the client application, and the Ethereum blockchain
ecosystem [32]. The proposed system performs DApp and
blockchain communications over a Remote Procedure Call
(RPC) protocol. RPC transactions are made possible by the
Web3.js library, which translates smart contract scripts to RPC
protocol. The client application has access to all the smart
contracts deployed on the blockchain, allowing it to perform
function calls to manage SSLA management functionalities.

2) Deployment of smart contracts: We executed the de-
veloped prototype using Ethereum-based smart contracts and
coded the smart contracts using solidity language. We built
and deployed Ethereum contracts through a browser-based
compiler known as Remix IDE.

The key functions of each smart contract are summarized
as follows:

• User Authentication Contract: Registers stakeholders and
monitoring nodes. Further, it validates the access permis-
sion requests sent by stakeholders.

• Policy Manager Contract: Deploys and stores SSLAs in
blockchain

• Violation Monitoring Engine Contract: Stores network
monitored data and decides whether a violation happened

• Compensation Calculator Contract: Calculates the com-
pensation fee and the amount to be transferred for the
service provider and blockchain for their service deliver-
ies

• Reputation Management Contract: Calculates the reputa-
tion scores for service providers and blockchain nodes

14

VIII. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed PoM and
SSLA framework by conducting tests on the custom-built
blockchain and the Ethereum-based prototype, respectively. In
the custom-built blockchain, we ran tests to compare PoM
with PoW with respect to average block creation time and the
total energy consumption per block by varying the number of
transactions per block and the difficulty levels of the consen-
sus. In the Ethereum-based prototype, we carried out a cost
analysis and measured the end-to-end latency of the system.
To obtain results for proof of work, we replace the PoM
consensus with a locally developed proof of work algorithm,
which calculates the correct nonce to get the valid block
hash based on different difficulties. For the tests, the nodes
in the network are set to 5, broadcasting the shares randomly
among each other. The maximum number of shares that can
generate is the difficultyfactor × numberofnodes, and
the threshold to combine the shares is maximumshares −
(numberofnodes/2). One of the nodes sends different sets of
transactions ranging from 100 up to 10000, and one of them
mines the transactions using RESTful API calls and records
the block creation time.

A. Block time evaluation

Fig. 14 depicts the comparison of PoW with PoM in terms
of the block creation time for various transactions ranging
from 100 to 10000, keeping the difficulty constant for both
systems. In the case of PoM, the block creation time is high
initially, but as the number of transactions increases, the time
decreases and stays almost the same. This behavior is because
fewer transactions get processed faster, and the miner still does
not have the minimum shares to mine the block. Therefore the
miner waits for more shares. As the number of transactions
increases, the miner has the required shares by the time all the
transactions reach the transaction pool to get mined. Hence the
block creation time is less, and it increases slowly with the
increment of transactions, which then extends the processing
time. For PoW, as the number of transactions increases, we
see an increase in the block creation time because generating
the valid hash becomes more difficult.

We made a further comparison of both algorithms by
calculating the block creation time of 10000 transactions by
increasing the difficulty from 1 to 6, as shown in Fig. 15.
The block creation time increases gradually, with the threshold
shares required by the miner increasing with difficulty. The
waiting period for the miner to get the threshold amount
of shares contributes to the rise in time. As the broadcast
frequency is pretty low, the block creation time increases at a
plodding pace.

B. Energy consumption evaluation

We carried out tests to compare the energy consumption
between PoM and PoW consensus algorithms. We referred to
the equation 11 for calculating the energy consumption. Let
P system be the power usage of the system, which is 0.55 kW
for all the tests, and T block be the block time derived from
previous tests.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Transaction Count

0

10

20

30

40

50

60

70

80

90

100

B
lo

c
k
 C

re
a
ti
o
n
 T

im
e
 (

s
)

PoM

PoW

Fig. 14: Average block time against number of transactions
per block

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Difficulty levels

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
lo

c
k
 C

re
a
ti
o
n
 T

im
e
 (

s
)

PoM

PoW

Fig. 15: Average block time versus different difficulty levels

Energy = P system ×
T block

1000
(11)

We plotted the energy consumption with respect to the
number of transactions per block in Fig.16. It is clearly evident
that the energy consumption of PoW dramatically increases
with the increase in the number of transactions. In contrast,
PoM shows less energy consumption even with the variation
in the number of transactions per block. Fig. 17 depicts
the energy consumption for 1000 transactions for different
difficulty levels. The energy consumption of both consensuses
remains almost similar. It increases slowly till difficulty 4, after
which the energy increases exponentially in the case of PoW,
whereas it increases linearly for PoM. The reason is that until a
difficulty of 4, the system calculates the valid hash relatively
quickly. However, when it increases further, the calculation
of the valid hash takes a high amount of time, thus increasing
energy consumption. In the case of the PoM, difficulty increase
leads to an increase in the threshold shares, which keep getting

15

100 250 500 750 1000 5000 10000

Transaction Count

0

0.005

0.01

0.015

0.02

0.025

0.03
E

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
W

h
)

PoM

PoW

Fig. 16: Total energy consumption per block versus number
of transactions per block

1 2 3 4 5 6

Difficulty levels

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
W

h
)

PoM

PoW

Fig. 17: Total energy consumption per block against different
difficulty levels

broadcasted by nodes in fixed intervals. Hence the waiting
time for the miner to achieve the threshold increases linearly,
resulting in a linear increase in energy consumption.

C. End-to-end latency

We carried out a test to measure the time taken to execute
the main functionality of the proposed system. That is, the
combination of three main functionalities of the proposed ap-
proach: (1) blockchain nodes monitor the network and submit
sensed data to the proposed framework (2) Following that, the
system decides whether a violation occurred or not (3) finally,
imposing penalty (if any violations) on SP, compensating the
customer and transferring fee to violation reporters. We coded
each of these functionalities in Ethereum-based smart contracts
and deployed them in the Rinkeby network (refer VII-B). We
invoked each smart contract from the client application (DApp)
100 times, measured the end-to-end latency to run each of the

0 10 20 30 40 50 60 70 80 90 100

Test Number

160

180

200

220

240

260

280

300

320

340

T
im

e
 (

s
)

End-to-end Latency

Average Latency

Upper Confidence

Lower Confidence

Fig. 18: End-to-end latency from violation reporting to com-
pensating a customer

three processes, and summed them together. Each measured
end-to-end delay consists of the average block creation time
of 15s [33], which is the block creation time of the Rinkeby
Testnet. We substituted it with the estimated block verification
time of PoM, which we derived by testing. Thereafter, we
plotted the previously calculated total end-to-end delay with a
95% confidence interval and demonstrated in Fig. 18. Based on
the plotted results, we measured the average end-to-end time
taken for the entire process, from data reporting to violation
detection and payment settlements, as approximately 4 minutes
(238s).

D. Cost analysis

This subsection analyses the costs incurred in smart contract
deployment and execution. In the implementation of smart
contracts, a payment of a gas fee is required in the Ethereum
blockchain to conduct transactions. TableII lists the estimation
of the gas consumption for the deployment of contracts and
execution of defined functions in the contract. Using the Remix
IDE web browser, we found these estimated gas values. Based
on the tabulated results, the total cost incurred to deploy all
the smart contracts is approximately 14 Euros, a one-time
payment. For the execution of all other blockchain service
functionalities, it costs around a total of 2 Euros. Based on the
results, we can conclude that the cost incurred to implement
the whole system is considerable when implemented on the
Ethereum blockchain. However, we can significantly reduce
these costs by implementing the proposed SSLA management
framework on top of our novel blockchain system. Most state-
of-art-approaches have implemented their SLA/SSLA services
over the Ethereum platform, meaning they have run their
services on a PoW-based blockchain platform. In our case, we
will be utilizing the proposed PoM-based blockchain, which
is custom-built for the management of SSLAs.

16

TABLE II: Gas consumption analysis of Ethereum-based con-
tracts utilized in SSLA management services

Contract/Functions Cost
Gwei EURa

User Authentication Contract 713139 2.04
Create User Function 118619 0.334
User Verification Function 24613 0.07
Policy Manager Contract 1515118 4.335
Create SSLA Function 91533 0.026
Customer Approval Function 47703 0.136
Violation Monitoring Engine Contract 1310897 3.75
Security Metric Storage Function 25420 0.0727
Violation Decision Function 23789 0.068
Compensation Calculator Contract 931808 2.666
Stakeholder Compensation Function 23809 0.068
Reputation Management Contract 419667 1.2
Reputation Calculation Function 31117 0.089
1 Ether = 109 Gwei,a1 ether = EUR 2861.21 on 20.04.2022

IX. SECURITY AND FORMAL ANALYSIS

This section defines and evaluates the general and security
properties of the PoM-based blockchain system. Further, we
present a threat model with potential attacks and defense
strategies. In the end, we present the formal model and
formal verification of the PoM consensus protocol analyzing
its results.

A. Definitions

Definition 1: Chain Quality [34] Let µ ∈ (0, 1] be the
chain quality coefficient. The chain quality QCQ expresses
that if l(l ∈ N) number of successive blocks of a chain C
acquired by an honest party, then a portion of µ blocks mined
by attackers. Then the expected lower bound on the proportion
of honest blocks of chain C can be stated as QCQ = 1− µ.

Definition 2: Chain Growth [34] Let τ ∈ (0, 1] be the
chain speed coefficient. The chain growth QCG expresses that
if the chains C1, C2 held by honest parties at rounds r1, r2
with chain lengths l1, l2 respectively. r2 is ahead of r1 by
s(s ∈ N) number of rounds. Then, it satisfies the r2−r1 ≥ τ.s

Definition 3: Fork Probability The fork probability QFP
expresses the potential for blockchain nodes to receive more
than one block simultaneously.

Definition 4: Chain Consistency [35] The chain consis-
tency QCC assures that all honest parties will produce the same
order of blocks in round r, allowing only the last T number
of blocks to be changed.

Definition 5: Blockchain Fork Blockchain fork may trigger
when many perspectives on the state of the blockchain exist.
That is when several nodes mine simultaneously and may find
conflicting blocks which split the main chain into multiple
chains.

B. Property analysis of the PoM-based blockchain

This subsection presents the analysis of the primary
blockchain properties of the proposed consensus protocol.
Namely, fork probability, chain growth, chain consistency, and
chain quality. We developed different models to assess each of

the properties. We designed a probabilistic model to evaluate
fork probability and chain growth. Whilst a Markov model
to analyze chain consistency. In addition to that, we refer to
the simulation model discussed in Section VI-C to assess the
chain quality.

1) Fork Probability: We divide secret S into n number
of unique key shares. For a successful reconstruction of S
(or finding the mining solution), a node must recover at
least k(< n) number of unique key pieces. Let us assume,
as an average, that a single node receives keys at a rate
of γ key shares per second. Therefore, the number of key
pieces received by the node after q seconds is γq. A node
acquires keys from itself and its neighboring nodes. Each
key share received draws from n total key shares. The same
key share can be received multiple times from other nodes
even though unique key shares contribute to achieving the
consensus. Therefore, we assume receiving keys as events of
simple random sampling with replacement. Let the probability
of finding a mining solution at q seconds is Y q, which is
the same as the probability of having minimum k unique key
shares within γq(≥ k) key shares. Let U k be the probability
of having at least k unique keys after q seconds, and N be the
number of unique key shares a node captured after q seconds,

U k = Pr(N ≥ k) (12)

It is obvious that U 1 = 1. U 2 is derived from U 1 with
probability 1− 1

γq , or from U 2 itself with probability 2
γq . That

is because there are γq items in total. Hence, we can deduce
U 2 as follows,

U 2 = (1− 1

γq
) ∗ U 1 + (

2

γq
) ∗ U 2 (13)

Therefore, we formulate the general equation as below,

U k =
[1− k−1

γq] ∗ U k-1

[1− k
γq]

(14)

By solving the system of equations, we obtain the proba-
bility of having at least k unique key shares after q seconds,
which we denoted as Y q(= U k).

Blockchain fork occurs due to the propagation delay in the
network. Let α be the mean propagation delay. Then, the
probability of finding a solution during α period can be defined
as the fork probability QFP, which can be given as follows,

QFP = Y (q+α) − Y (q) (15)

2) Chain Growth: Maintaining consistent chain growth is
always desirable throughout the evolution of the blockchain.
However, with the presence of adversary miners, the chain
growth can be negatively influenced to make the chain stag-
nant. In our case, an optimal adversary strategy would be to
reduce the chain growth by not sharing their key shares with
neighboring nodes. Therefore, the expected number of key
shares received by a node per second (γ) drops proportionally
to the fraction of adversary nodes. Then the key receiving rate

17

with the presence of adversaries (γZ) can be derived as shown
in the equation 16,

Let the fraction of adversary nodes in the network be β,
then the fraction of honest nodes will be 1− β.

γZ = (1− β)γ (16)

Therefore, the probability of finding a mining solution at
any given q second with the presence of adversaries (denoted
by Y q

′
) can be deduced by substituting γ with γZ in equation

14, which gives the following equation 17.

Y q
′
=

[1− k−1
(1−β)γq] ∗ U k-1

[1− k
(1−β)γq]

(17)

3) Chain Consistency: We consider the Markov Chain
approach [35] in analyzing chain consistency. We rely on con-
vergence opportunities to construct the relationship between
when a new block is mined and all nodes synced with the new
block. It is a three-step event, (1) No honest player has mined
in α rounds. Hence, by the end of α rounds, all honest players
learned about all the existing blocks, and they all agreed on
the length of the longest chain. (2) an honest player finds the
mining solution and mines a block, which will be the last block
of the longest chain. (3) Following another α round where no
honest player mines. Hence, every honest player learns about
the new block and agrees on the longest chain. Note that we
define a round as an attempt made to mine a block when a
node receives a new key.

Based on [35], in order to prove that PoM achieves consis-
tency, we first need to demonstrate the possibilities of how an
adversary can break aforementioned convergence opportunities
at any given time. Otherwise, honest players have the opportu-
nity of converging on the same chain. For the analysis, we need
to count the expected number of convergence opportunities at
a given time and compare it with the expected number of
blocks that the adversary can mine, which is the minimum
amount of work that the adversary must commit to prevent
the convergence of honest players. An adversary can break
convergence opportunities by inserting one of their blocks in
the quiet period of steps (1) and (3). Hence, multiple blocks
will be at the same level, creating a fork for honest players
to disagree. The Markov model comes in handy in counting
events that occur at random intervals. In our situation, blocks
can be found close together and far apart during a given
time. Therefore we need to count precisely how long these
quiet periods are. The simple Markov chain of convergence
opportunity [35] corresponding to our PoM protocol can be
modeled as follows,

A Bα ≥ hit

α

hit, hit ≤ α

hit+ α

We present two states in the Markov model, state A:
honest mined blocks are found close together, where there
is no guarantee of convergence opportunity since the time
between the blocks is always less than α. With the existence

of α rounds where no player mines, the transition to state B
occurs. At state B, a convergence opportunity can occur if
an honest block is created and a α period of silence follows
that. Otherwise, the system state changes back to state A if
two honest blocks are found together at less than α time.

Let Pα be the probability of α rounds being unsuccessful
(silent), and then we can state Pα as shown in the equation
18,

Pα = (1− Y q)
α (18)

Let eab be the edge from state A to state B. Hence, we
can compute the stationary distribution for states and edges of
the Markov model as follows,

P [e00] = P [e10] = 1− Pα

P [e01] = P [e11] = Pα

π0 = P [A] = (1− Pα)π0 + (1− Pα)π1

π1 = P [B] = Pαπ1 + Pαπ0

(19)

Based on the research work presented in [35], we can
derive that our model satisfies consistency if the number of
convergence opportunities that can occur in T rounds is greater
than or equal to the maximum number of blocks mined by the
adversary during the same T rounds. Hence, we can state the
equation 20. Note that lij is the expected time spent on each
edge, and δ(> 0) is the tuning parameter.

T ∗ Pα
2∑

i,j P [eij]πijlij
≥ T ∗ (1 + δ)β (20)

4) Chain Quality: In our blockchain network, malicious
nodes may try to mine blocks selfishly without sharing or
revealing their portion of key shares to other nodes, which
reduces the chances of reconstructing the key during the
desired time interval. This type of scenario is simulated under
Section VI-C and based on its results (presented in Fig.11), we
can conclude that key reconstruction probability is high with
the existence of a large number of nodes in the blockchain
network including both honest and malicious nodes. Hence,
such malicious behaviors hardly threaten the overall mining
activity.

C. Threat model

A malicious miner can model different threats to interfere
with the functionality of the consensus process. Blockchain
fork triggers when many perspectives on the state of the
blockchain are present. That is when several nodes mine
simultaneously and may find conflicting blocks, which splits
the main chain into multiple chains. In addition to that, there
is a potential to have multiple winner miners at the following
stages; Key revealing stage: at round r, if a majority of nodes
require only a few key shares to find the mining solution,
then at the next round r + 1 there is a high probability of
finding the mining solution by more than one node. Key
distribution stage: If nodes can find the desired key when
they start distributing their key shares. To overcome these
situations, we have implemented effective tie-breaking criteria
such as longest chain and heaviest chain.

18

Malicious miners may try to mine blocks secretly without
sharing their portion of key pieces with other nodes while
receiving key pieces from others. To avoid this behavior, nodes
continuously monitor the broadcasts of neighboring nodes to
identify nodes with poor sharing patterns. If an uncooperative
node is detected, using a tit-for-tat like method, honest parties
refrain from sharing key pieces with such nodes.

Furthermore, selfish mining is another potential malicious
behavior that can appear in the network, where selfish miners
disclose mined blocks to the public blockchain network when
they possess a longer chain. However, in our system, the
probability of introducing a new block to the network by doing
selfish mining is extremely low. This is because selfish miners
do not receive keys from the majority of the network. This
results in extremely high block creation times. Therefore, the
length of the chain created by honest nodes will be very long
compared to that of selfish miners’ chain, making our model
tolerant of selfish mining.

D. Formal analysis of PoM

We developed our proposed consensus protocol using CSP#
[36] in the Process Analysis Toolkit (PAT) [37] model checker.
CSP# is a sub-language of Communicating Sequential Pro-
cesses (CSP), and it also supports C# libraries to be imported
where we can define required custom data structures and
functions. Our model made use of this property substan-
tially to implement fundamental features and functions of our
blockchain system. We ran the verification via PAT to validate
the general and security properties of the designed formal
model by defining several assertion rules. The complete CSP
model and the C# library for the PoM consensus are available
in a GitHub repository. 1

1) Formal Modeling: We modeled a blockchain network
with N number of nodes, where each node is connected with
a few other nodes. We allowed inter-node communication to
happen through channels we built between each connected
node. Each node runs a series of processes concurrently to
achieve consensus. These processes are defined as sequences
of events and represent basic functionalities of the proposed
consensus protocol, which is required to find a winning
node to create the block. According to CSP# [36] modeling
language, we can denote our blockchain system as a sequence
of fundamental processes that complement the main phases of
our PoM protocol as follows,

BlockChain() = Initialize();StartBroadcast();
StartBroadcast() = (||x : {1..N}@(Reveal(x);

(Send(x)||Receive(x)); IsMined()));StartBroadcast();
Note that P ;Q denotes a process P followed by process Q

and P ||Q denotes when P and Q processes run in parallel.
The initialize() process generates a master key M , a random
sequence of n keys. It assigns each node a master key by
shuffling key shares of M .

The Reveal(x) process, when called, reveals node x a key
at a time and adds revealed keys to a list (called Captured
Keys). The Send(x) process distributes keys only to their
neighbor nodes through channels connecting neighbor nodes.

1https://github.com/nisitaw94/PoM.git

Receive(x) process captures keys distributed by their neigh-
bor nodes and adds to its Captured Keys list if and only if the
received key is not in its list of collected keys. IsMined(x)
process inspects whether any node has captured k number of
unique keys, where k is the threshold, the number of keys
required to find the winning solution. If a winning miner has
been found, the IsMined(x) process sets a flag to indicate it,
and the verification program can verify it. StartBroadcast()
process allows N number nodes to execute sequence of
processes including Reveal(x), Receive(x) and IsMined(x)
in parallel, which is considered as one cycle. Inclusion of
StartBroadcast() at the end of StartBroadcast() permits
the algorithm to run continuously.

2) Formal Verification : We validated our formal model of
the proposed consensus protocol using the PAT model checker
by considering four aspects for verification. We simulated
these four aspects by varying the number of malicious nodes
in the system. Scenario 1 (S1): when none of the nodes are
malicious, Scenario 2 (S2): when one-third of total nodes
are malicious, Scenario 2 (S3): when half of the total nodes
are malicious and Scenario 3 (S4): when two-third of nodes
are malicious. We consider nodes malicious when they do
not cooperate in distributing their collected keys within the
network. We performed formal verification by setting the
following model parameters in the designed formal model
of the PoM: N=6 number of nodes, (n,k) = (20,18) number
of keys. We validated our system under the aforementioned
scenarios against the following set of properties and tabulated
its results in the table III,

• Deadlock-free (A1) assures that there does not exist any
interference continuing any process and does not halt any
activities of the nodes unexpectedly and indefinitely.

• Consensus (A2) examines whether any node in the
network is successful in acquiring k number of unique
keys to become the winning miner. If a node manages
to become the winner, we consider that our system has
reached a consensus.

• No Blockchain Fork (A3) guarantees a network with
no more than one winning node within the same cycle.
Here, a fork can be created during key revealing or key
receiving stages.

TABLE III: Verification results against the properties of the
formal model

Assertion Rules Deadlock
free
(A1)

Consensus
(A2)

No
Blockchain
Fork (A3)

#assert Blockchain() with no
malicious nodes (S1)

✓ ✓ ✓

#assert Blockchain() with mi-
nority malicious nodes (S2)

✓ ✓ ✓

#assert Blockchain() with half
malicious nodes (S3)

✓ ✓ ✓

#assert Blockchain() with ma-
jority malicious nodes (S4)

✓ ✓ ✓

3) Results Analysis: Based on table III, we can come to the
following conclusions corresponding to each assertion rule,

19

• A1: We can deduce that the system is deadlock-free
despite the model variations.

• A2: We can observe that regardless of malicious activities
present in the network, the system achieves consensus.
However, in order for the time to achieve consensus to
be in a reasonable range, the number of malicious nodes
should be as low as possible.

• A3: We can conclude that our model guarantees that no
blockchain fork occurs under all four scenarios from the
start until the winner of the first block is found.

One of the drawbacks of PAT we experienced during our
study is that the time it takes to run a verification grows
exponentially when the number of nodes increases. It is
because of the nature of the model-checking technique PAT
uses, which allows for a state explosion to occur with the
increasing complexity of the model [38]. Hence, we restricted
our model to six nodes.

X. DISCUSSION

A. Comparison with existing systems

TABLE IV: Feature comparison with related works

Features [3] [25] [26] [8] Ours
SLA/SSLA SSLA SLA SLA SLA SSLA
Blockchain-based ✗ ✓ ✓ ✓ ✓

Consensus Protocol - PoET PoW PoW PoM
SSLA-oriented Consensus
Protocol

- ✗ ✗ ✗ ✓

Automated System ✓ ✓ ✓ ✓ ✓

Network Sensing ✓ ✗ ✗ ✗ ✓

Violation Detection ✓ ✓ ✓ ✓ ✓

Customer Compensation ✗ ✓ ✓ ✓ ✓

SP Penalty Scheme ✗ ✗ ✓ ✗ ✓

Reputation Management ✗ ✗ ✗ ✓ ✓

Off-chain Storage ✗ ✗ ✗ ✗ ✓

Computational Complexity - Low High High Low
✓→ Yes, ✗→ No, - → Not Applicable

Table IV compares the proposed SSLA management sys-
tem with the existing state of the work. There is still no
novel blockchain-based SSLA management system introduced.
However, there is plenty of research work on SLAs now run
on the blockchain. Hence, we compared our work with both
SLA and SSLA research studies. Blockchain systems are way
better than non-blockchain system since it permits automating
the whole system by running services via smart contracts.
Nevertheless, there are still bottlenecks in Blockchain-based
systems, such as high energy consumption, high computational
complexity, and high cost. Our solution rectifies these chal-
lenges by introducing a SSLA application-biased consensus
protocol.

B. Challenges

During the development of the prototype few design chal-
lenges were identified, i.e., to generate the elliptic curve for
key computation, a random number had to be used to get
the generator point on the curve. However, for each miner to
generate the same master key, The generator point had to be

the same for all the miners. It is practically not achievable.
Hence, we used a combination of the last block’s timestamp
and its creator’s address in place of the random number. In
addition, during the block verification phase, the winner miner
was supposed to broadcast the message consisting of the public
key Qu by encrypting it with the private key du. Since the block
verification has to be done by every node in the network while
syncing their local blockchain, instead of using an asymmetric
cryptographic algorithm ECDSA, we decided to incorporate a
symmetric cryptographic algorithm. So that the broadcasting
miner can sign the winning message using the common key
Qu and the nodes can verify the signature using their version
of Qu and verify the message for a successfully mined block.

There are plenty of modular blockchains available that
claim to be fully customizable. However, it is inevitable that
the customized blockchain shares most of its fundamental
characteristics with its counterpart in most cases. As a result,
they still need to be more flexible to adapt to a custom
blockchain with a work-based consensus algorithm. For ex-
ample, the Stratis platform consists of PoW/PoS/ Proof-of-
Authority (PoA) consensus options, while Hyperledger sup-
ports KAFKA/SOLO. Even though they are customizable, in
order to be a feasible model, it is expected from adapters that
their new algorithms inherit from the existing ones, which
essentially limits the customisation only up to a certain extent.
In contrast, we implemented our proposed consensus algorithm
in a local blockchain developed using NodeJS from scratch.

XI. CONCLUSION

In this research, we thoroughly evaluated the potential
challenges of conventional SLA/SSLA management systems.
We introduced an automated SSLA management framework
with an accompanying custom blockchain to mitigate them.
Based on the experimental results of the implemented PoM
consensus, we concluded that the system consumes less time,
energy, and cost compared to PoW, the most commonly used
consensus algorithm in state-of-art blockchain-based SLA sys-
tems. The calculations indicate satisfactory end-to-end latency
levels even though such SLA management systems are not
time-critical. More importantly, the overall performance of
our solution in terms of available security features proves to
outperform most other platforms available. With the utilization
of off-chain databases to securely store monitoring data, we
prevented excessive growth of the ledger, thereby improving
scalability and adaptability. As the very first blockchain-
based SSLA management framework, we identified potential
application scenarios for the given system in current and future
networking paradigms. In the future, we plan to further expand
the implementation of SSLA management services and the
proposed blockchain system by leveraging AI-based solutions
to predict SSLA violations beforehand.

ACKNOWLEDGMENT

This research has been supported by the Academy of
Finland, 6G Flagship program under Grant 346208 and the
Science Foundation Ireland under Connect Center (13 RC/
2077 P2). The research leading to these results partly received

20

funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement no 871808
(5G PPP project INSPIRE-5Gplus). The paper reflects only
the authors’ views. The Commission is not responsible for
any use that may be made of the information it contains.

REFERENCES

[1] E. Marilly, O. Martinot, S. Betge-Brezetz, and G. Delegue, “Require-
ments for service level agreement management,” in IEEE Workshop on
IP Operations and Management, 2002, pp. 57–62.

[2] C. Lee, K. M. Kavi, R. A. Paul, and M. Gomathisankaran, “Ontology
of Secure Service Level Agreement,” in 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering, 2015, pp. 166–172.

[3] P. Alemany, D. Ayed, R. Vilalta, R. Muñoz, P. Bisson, R. Casellas,
and R. Martı́nez, “Transport network slices with security service level
agreements,” in 2020 22nd International Conference on Transparent
Optical Networks (ICTON). IEEE, 2020, pp. 1–4.

[4] E. Viegas, A. Santin, J. Bachtold, D. Segalin, M. Stihler, A. Marcon,
and C. Maziero, “Enhancing service maintainability by monitoring and
auditing SLA in cloud computing,” Cluster Computing, vol. 24, no. 3,
pp. 1659–1674, 2021.

[5] H. Natarajan, S. Krause, and H. Gradstein, Distributed Ledger Technol-
ogy and Blockchain. World Bank, 2017.

[6] Z. Tian, M. Li, M. Qiu, Y. Sun, and S. Su, “Block-DEF: A Secure
Digital Evidence Framework Using Blockchain,” Information Sciences,
vol. 491, pp. 151–165, 2019.

[7] H. Nakashima and M. Aoyama, “An automation method of sla contract
of web apis and its platform based on blockchain concept,” in 2017 IEEE
International Conference on Cognitive Computing (ICCC). IEEE, 2017,
pp. 32–39.

[8] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, “A
blockchain based witness model for trustworthy cloud service level
agreement enforcement,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 1567–1575.

[9] E. Marilly, O. Martinot, S. Betge-Brezetz, and G. Delegue, “Require-
ments for service level agreement management,” in IEEE Workshop on
IP Operations and Management, 2002, pp. 57–62.

[10] J. S. Duela and P. U. Maheswari, “Mitigation of DDoS Threat to Service
Attainability in Cloud Premises,” International Journal of Reasoning-
based Intelligent Systems, vol. 10, no. 3-4, pp. 337–346, 2018.

[11] C. A. B. De Carvalho, R. M. de Castro Andrade, M. F. de Castro, E. F.
Coutinho, and N. Agoulmine, “State of the Art and Challenges of Secu-
rity SLA for Cloud Computing,” Computers & Electrical Engineering,
vol. 59, pp. 141–152, 2017.

[12] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim,
“Internet of Things (IoT) for Next-Generation Smart Systems: a Review
of Current Challenges, Future Trends and Prospects for Emerging 5G-
IoT Scenarios,” IEEE Access, vol. 8, pp. 23 022–23 040, 2020.

[13] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila,
“PAuthKey: A pervasive authentication protocol and key establishment
scheme for wireless sensor networks in distributed IoT applications,”
International Journal of Distributed Sensor Networks, vol. 10, no. 7, p.
357430, 2014.

[14] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[15] F. Faniyi and R. Bahsoon, “A systematic review of service level
management in the cloud,” ACM Computing Surveys (CSUR), vol. 48,
no. 3, pp. 1–27, 2015.

[16] P. Grubitzsch, I. Braun, H. Fichtl, T. Springer, T. Hara, and A. Schill,
“ML-SLA: Multi-Level Service Level Agreements for Highly Flexible
IoT Services,” in 2017 IEEE International Congress on Internet of
Things (ICIOT), 2017, pp. 113–120.

[17] S. Hm and G. Prakash, “Trust Modeling and Service Level Agreement
Monitoring in Federated Cloud,” 2021.

[18] K. Xiao, Z. Geng, Y. He, G. Xu, C. Wang, and Y. Tian, “A blockchain-
based privacy-preserving 5G network slicing service level agreement
audit scheme,” EURASIP Journal on Wireless Communications and
Networking, vol. 2021, no. 1, pp. 1–16, 2021.

[19] R. Ranchal and O. Choudhury, “SLAM: A Framework for SLA Manage-
ment in Multicloud ecosystem using Blockchain,” in 2020 IEEE Cloud
Summit, 2020, pp. 33–38.

[20] H. Afzaal, M. Imran, M. U. Janjua, and S. P. Gochhayat, “Formal Mod-
eling and Verification of a Blockchain-Based Crowdsourcing Consensus
Protocol,” IEEE Access, vol. 10, pp. 8163–8183, 2022.

[21] W. Y. M. M. Thin, N. Dong, G. Bai, and J. S. Dong, “Formal analysis
of a proof-of-stake blockchain,” in 2018 23rd International Conference
on Engineering of Complex Computer Systems (ICECCS). IEEE, 2018,
pp. 197–200.

[22] J. Rupasena, T. Rewa, K. T. Hemachandra, and M. Liyanage, “Scalable
Storage Scheme for Blockchain-Enabled IoT Equipped Food Supply
Chains,” in 2021 Joint European Conference on Networks and Com-
munications & 6G Summit (EuCNC/6G Summit). IEEE, 2021, pp.
300–305.

[23] “MATLAB,” last accessed 15 April 2022. [Online]. Available:
https://www.mathworks.com

[24] L. Zhang, H. Xu, O. Onireti, M. A. Imran, and B. Cao, “How Much
Communication Resource is Needed to Run a Wireless Blockchain
Network?” arXiv preprint arXiv:2101.10852, 2021.

[25] R. B. Uriarte, H. Zhou, K. Kritikos, Z. Shi, Z. Zhao, and R. De Nicola,
“Distributed service-level agreement management with smart contracts
and blockchain,” Concurrency and Computation: Practice and Experi-
ence, vol. 33, no. 14, p. e5800, 2021.

[26] C. Schweizer, “SLAMer: a blockchain-based SLA Management Sys-
tem,” 2019.

[27] P. Abhishek, A. Chobari, and D. Narayan, “SLA Violation Detection
in Multi-Cloud Environment using Hyperledger Fabric Blockchain,” in
2021 IEEE International Conference on Distributed Computing, VLSI,
Electrical Circuits and Robotics (DISCOVER). IEEE, 2021, pp. 107–
112.

[28] A. Alzubaidi, K. Mitra, P. Patel, and E. Solaiman, “A blockchain-based
approach for assessing compliance with sla-guaranteed iot services,”
in 2020 IEEE International Conference on Smart Internet of Things
(SmartIoT). IEEE, 2020, pp. 213–220.

[29] A. T. Wonjiga, S. Peisert, L. Rilling, and C. Morin, “Blockchain as a
trusted component in cloud SLA verification,” in Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing
Companion, 2019, pp. 93–100.

[30] J. Sedlmeir, H. U. Buhl, G. Fridgen, and R. Keller, “The energy
consumption of blockchain technology: beyond myth,” Business &
Information Systems Engineering, vol. 62, no. 6, pp. 599–608, 2020.

[31] P. Porambage, Y. Miche, A. Kalliola, M. Liyanage, and M. Ylianttila,
“Secure keying scheme for network slicing in 5G architecture,” in 2019
IEEE Conference on Standards for Communications and Networking
(CSCN). IEEE, 2019, pp. 1–6.

[32] W.-M. Lee, “Using the Metamask Chrome Extension,” in Beginning
Ethereum Smart Contracts Programming. Springer, 2019, pp. 93–126.

[33] “Ethereum Testnet,” last accessed 22 April 2022. [Online]. Available:
https://www.rinkeby.io/

[34] A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in blockchain
protocols,” Cryptology ePrint Archive, 2015.

[35] L. Kiffer, R. Rajaraman, and A. Shelat, “A better method to analyze
blockchain consistency,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 729–
744.

[36] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating specification
and programs for system modeling and verification,” in 2009 Third
IEEE International Symposium on Theoretical Aspects of Software
Engineering. IEEE, 2009, pp. 127–135.

[37] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards flexible
verification under fairness,” in International conference on computer
aided verification. Springer, 2009, pp. 709–714.

[38] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking
and the state explosion problem,” in LASER Summer School on Software
Engineering. Springer, 2011, pp. 1–30.

21

Nisita Weerasinghe is a Doctoral student of Net-
SEC (Network security, trust and privacy) re-
search group at Center for Wireless Communications
(CWC), University of Oulu, Finland. She received
her B.Sc degree in Electrical and Electronic En-
gineering from Sri Lanka Institute of Information
Technology (SLIIT), Malabe, Sri Lanka, in 2018
and Master of Science in Wireless Communications
Engineering from the University of Oulu, Finland, in
2020. She has over two-year research experience in
CWC, University of Oulu in the area of Blockchain,

Local 5G networks and Network Security. Her research interests include
Blockchain, 5G, Local 5G Operators, Network Security, Network Slicing.

Raaj Mishra is a Product Lead at Dell Technolo-
gies, Bangalore, India. He finished his B.Tech at
the Department of Computer and Communication
Engineering, School of Computing and Informa-
tion Technology, Manipal University Jaipur, India in
2020. Raaj has experience in fullstack software and
blockchain-based decentralized application (DApp)
development. He has also worked on two Blockchain
based projects and has published papers at IEEE
CCNC 2020 and IEEE 5G World Forum 2020. He
also has conducted three workshops: ”Blockchain

for Cyber-Physical Systems and IoT” at ANTS 2019 and ”Blockchain
Technology, Its Technical Challenges and Role of Formal Methods” at ETCI
2021, ”Emerging Applications of Blockchain Technologies in India” at ISPDA
2022. His research interests include blockchain, decentralized Applications,
microfrontends and network security.

Pawani Porambage is a senior researcher at VTT
Technical Research Centre of Finland and an Ad-
junct Professor at University of Oulu, Finland. She
was a researcher at the Centre for Wireless Commu-
nications, University of Oulu, Finland over ten years.
She obtained her B.Sc. Degree in Electronics and
Telecommunication Engineering from University of
Moratuwa, Sri Lanka in 2010, MSc. Degree in
Ubiquitous Networking and Computer Networking
from University of Nice Sophia-Anipolis, France in
2012, and Doctor of Technology in communication

engineering from University of Oulu, Finland in 2018. She has over nine
years of experience in network security domain and co-authored more than
50 publications. Her main research interests are network slicing, blockchain,
lightweight security protocols, security and privacy on IoT, and AI/ML for
security and privacy.

Madhusanka Liyanage (Senior Member, IEEE) is
an Assistant Professor/Ad Astra Fellow and Director
of Graduate Research at the School of Computer Sci-
ence, University College Dublin, Ireland. He is also
acting as a Docent/Adjunct Professor at University
of Oulu, Finland, University of Ruhuna, Sri Lanka
and University of Sri Jayawardenepura, Sri Lanka.
He received his Doctor of Technology degree in
communication engineering from the University of
Oulu, Oulu, Finland, in 2016. From 2011 to 2012, he
worked as a Research Scientist at the I3S Laboratory

and Inria, Sophia Antipolis, France. He was also a recipient of the prestigious
Marie Skłodowska-Curie Actions Individual Fellowship and Government of
Ireland Postdoctoral Fellowship during 2018-2020. During 2015-2018, he has
been a Visiting Research Fellow at the CSIRO, Australia, the Infolabs21, Lan-
caster University, U.K., Computer Science and Engineering, The University
of New South Wales, Australia, School of IT, University of Sydney, Australia,
LIP6, Sorbonne University, France and Computer Science and Engineering,
The University of Oxford, U.K. He is also a senior member of IEEE. In 2020,
he received the ”2020 IEEE ComSoc Outstanding Young Researcher” award
by IEEE ComSoc EMEA. In 2021, he was ranked among the World’s Top
2% Scientists (2020) in the List prepared by Elsevier BV, Stanford University,
USA. Also, he was awarded an Irish Research Council (IRC) Research Ally
Prize as part of the IRC Researcher of the Year 2021 awards for the positive
impact he has made as a supervisor. Dr. Liyanage’s research interests are
5G/6G, SDN, IoT, Blockchain, MEC, mobile, and virtual network security.
More info: www.madhusanka.com

Mika Ylianttila (M. Sc, Dr.Sc, eMBA) is a full-time
associate professor (tenure track) at the Centre for
Wireless Communications - Networks and Systems
research unit, at the Faculty of Information Technol-
ogy and Electrical Engineering (ITEE), University
of Oulu, Finland. He is the director of Communica-
tions Engineering Doctoral Degree Program and he
leads NSOFT (Network security and softwarization)
research group which studies and develops secure,
scalable and resource-efficient techniques for 5G and
beyond 5G and IoT systems. He has co-authored

more than 200 international peer-reviewed articles. He is a Senior Member
of IEEE and associate editor in IEEE Transactions on Information Forensics
and Security.

