
Real-time monitoring of SDN networks using
non-invasive cloud-based logging platforms

Bartlomiej Siniarski∗ Cristian Olariu∗, Philip Perry∗, Trevor Parsons§ and John Murphy∗
∗UCD, School of Computer Science and Informatics, Belfield, Dublin 4, Ireland

§ Logentries, Rapid 7, 26-28 Lombard Street, Dublin 2, Dublin, Ireland
bartlomiej.siniarski@ucdconnect.ie, cristian.olariu@ucd.ie, philip.perry@ucd.ie

trevor.parsons@logentries.com, j.murphy@ucd.ie

Abstract—The Software Defined Networking (SDN) paradigm
enables quick deployment of software controlled network infras-
tructures, however new approaches to system monitoring are
required to provide network administrators with instant feedback
on a network’s health. This paper details the deployment of an
SDN system architecture featuring the integration of a cloud-
based, real-time log-analysis platform. The proposed architecture
uses log data collected from host machines, OpenFlow switches
and the SDN controllers in a non-invasive style. This work uses a
commercially available correlation platform to provide network
administrators with a real-time view of the network status and
the approach is validated under two scenarios:- network overload
and a security attack.

I. INTRODUCTION

The use of wireless networks in enterprise deployments is
becoming increasingly important to the functions of enter-
prises as the use of Bring-Your-Own-Device (BYOD) services
proliferates and business functionality is increasingly pushed
onto employees smart phones. It is therefore interesting to
explore ways that can ease the burden of managing such a
network without the need to employ a networking expert with
deep knowledge of the peculiarities of the interaction between
such networks and the heterogeneous traffic that they must
carry.

The Software Defined Networking (SDN) paradigm allows
the centralisation of network intelligence in an SDN Controller
Node. The general task of a controller is to identify data flows
in a network and manage network behaviour for each flow,
using protocols, such as OpenFlow. This approach allows the
network to behave differently for each flow for each user of
the network which yields both a tailored service and efficient
resource utilisation. This approach can allow the efficient
deployment and management of wired and wireless systems
within a range of enterprise scenarios where deep knowledge
of the network performance is often outsourced. However, the
dependence on a small number of software nodes opens the
possibility of performance bottlenecks, single point of failure
and security attacks. In this work we focus on the performance
issues that can arise and use these as an indicator of other
undesirable activity.

Like most software systems, the SDN controller is typically
equipped with logging features that can be used at run time to
provide insight into the behaviour of the software and the hard-
ware that it is running on. The amount of logging depends on

developer style, however typically it will log the occurrence of
major SDN functions such as flow table modification, network
component connection status and topology characteristics. The
SDN controller log files contain valuable raw information
about the network events processed by the software modules,
however those logs do not reflect the overall performance and
state of the network.

In this paper we combine the information gathered from the
SDN controller and individual network components in order
to view a wide range of event types, proactively monitor the
system performance, build real-time alerts and notifications,
identify anomalies and allow the administrator to perform real-
time health monitoring of the SDN network without the need
for an in-house networking expert. We also gather information
from the host machines to ensure that the compute platforms
hosting the software functions are not a limiting factor the
the system performance. All collected data is processed in
real-time in a non-invasive style, having negligible impact on
the overall system performance. In this work we use a cloud-
based log analysis tool to analyse logs from SDN controllers
and switches. The tool used here is developed by Logentries
which grew out from an anti-pattern research work [1] and
later generalised as a cloud-based real-time logging tool aimed
at enterprise software systems. Applying the tool to SDN is
a novel use of the tool, as it requires extensive knowledge of
logging, log analysis, network behaviour and SDN domain-
specific knowledge.

The biggest advantage of real-time logging platforms is that
the log data is analysed and processed as it is streamed to the
cloud server. Unlike traditional approaches, real-time logging
systems provide insight within seconds and enable immediate
notifications, alerts and visualisation of events. This approach
means that the enterprise network administrator does not need
to develop a bespoke analytics platform to observe the impact
of traffic variation that can be particularly troublesome in the
wireless segments of the network.

This paper is structured as follows: Section III describes the
proposed system architecture and provides the reader with a
detailed description of system components. Section IV is an
overview of tools and techniques used to simulate the SDN
network environment used for testing. The results for two test
scenarios are presented in section V and contain observations
and findings. This paper presents the results in section V

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

978-1-5090-3254-9/16/$31.00 ©2016 IEEEAuthorized licensed use limited to: University College Dublin. Downloaded on January 24,2023 at 09:39:01 UTC from IEEE Xplore. Restrictions apply.

followed by conclusions.

II. RELATED WORKS

Background research of previous work in the area of SDN
network performance measurement revealed attempts [2] to
overload the SDN controllers, using Cbench [3] and hcprobe
[4], however simulated network components including imita-
tions of switches, do not provide realistic results reflecting the
limits of the SDN controller, they also do not provide us with
a realistic view of the SDN network testing environment. The
evaluation of network emulator capabilities supported by the
results from [5] in the field of network emulation was carried
out in order to estimate network limits and approve the set up
scenarios for the experiments.

The author of another work [6] based around network health
monitoring made a valid point claiming that network health
monitoring against network failures, congestions, misconfig-
urations, and security attacks should be an integral part of
creating dependable network services. Network management
system, then, should be able to track a detected problem’s root
cause in real time in order to remove the problem within the
contained network space.

Further research in the area of SDN network health monitor-
ing revealed, there are very few tools to meet a requirements
of network monitoring in such a wide scope, especially in
the field of SDN/NFV. Log event analysis in SDN networks
is a novel approach to tackle the problem of network device
failure, congestion detection and other issues that may arrise,
while running a virtualised network such as misconfiguration
or security attacks. In this work we use a cloud-based real-time
log management tool from Logentries [7] to analyse logs from
the SDN controller, host machines and OpenFlow switches.
Logentries is a leading log management service among other
services such as, Splunk [8], Logstash [9], able to dynamically
scale and adapt to data volume or infrastructure.

Continuation of research in the field of SDN networking,
especially in the field of SDN security [10] confirmed that new
methods and techniques must be considered and explored in
order to enable the dynamic configurations in SDN security
monitoring, detection, prevention and recovery capabilities.
Another extensive SDN security survey [11] by the same
author claimed that logging the network events can be valuable
to network operations and can improve the security and
reliability of the infrastructure.

III. SYSTEM ARCHITECTURE

In our proposed system architecture depicted in Figure 1,
all log events produced by a controller or a set of controllers
are collected by a log management agent and periodically
pushed to the log management and analysis platform deployed
in the cloud. The same agent monitors the performance of
the server running the SDN controller[s] and periodically
pushes data to the log management platform. The server logs
include performance metrics such as CPU usage, memory
usage, statistics per network interface, and disk statistics.

Fig. 1. Proposed system architecture

Similarly to the Control Plane, all logs produced by a single
machine or multiple machines running network components
in the infrastructure layer are collected by log management
agents and pushed to the log management platform for real-
time analysis via TCP connections. Network administrators are
now able to view, correlate and analyse SDN network logs in
real-time or refer to historical data. To assure the reliability
of the monitoring data, TCP should be used to transport log
messages to the analysis platform.

The log management agent is a program that automates data
collection from the log files and forwards the collected data
to the log management platform within seconds. Thus, the log
file contents must be read as the events happen and streamed
to the log analysis platform.

A. Log Event Format

The log analysis platform must be able to ingest any type of
log data produced by virtualised network architecture. Most of
the well known logging platforms provide agents that will help
simplify and automate log collection in users environment.
Ideally the log files are in a structured format, e.g. JSON,
however a logging platform should also be able to process
unstructured log files.

The format of an SDN controller’s log files may vary
depending on the programming language used, debugging
strategy and the programmers’ style. The log management
platform should be able to understand the Key-Value-Pair
format, however the platform should include the support for
Regular Expressions, such as in the work of Yu et al. [12],
in order to extract values from unstructured log data or scan
packet content if necessary.

B. Feedback Channel

The User Feedback Channel in Fig 1, is built around
notification capabilities of the log analytic platform which can
be used to: i) notify the network administrator about all poten-
tially critical events that may affect the overall performance
of the network, ii) possible network attacks and the context of
the malicious behaviour, and iii) report the overall health of
the network.

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

Authorized licensed use limited to: University College Dublin. Downloaded on January 24,2023 at 09:39:01 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTAL SETUP

Experiments are carried out in a virtualised environment
depicted in Figure 2 and is able to host the SDN network and
the SDN controller. The machine used for testing is a Dell
T5500 server which has a 4-core, Intel Xeon E5630 CPU,
running at 2.53 GHz with hyper-threading enabled, 24 GB
DDR3 memory running at 1600 MHz. The server is running
Lubuntu 14.01 with XEN as the virtualisation hypervisor. The
SDN network is emulated inside a virtual machine that runs
on 2 cores (4 threads in total) and 12 GB of RAM. The
control plane virtual machine runs on 1 core (2 threads) and 10
GB of RAM. The virtual machines are connected using Open
vSwitch. Internet access is granted to both Fully-Virtualized
VMs in order to communicate with the logging platform.

Fig. 2. Experimental setup

In order to minimise the uncertainty of non-realistic network
environments we have developed the SDN Network Test
Manager to run a series of tests. We used an instance of a
SDN controller running a Layer 2 forwarding application that
is connected to a Mininet [13] network. The emulated envi-
ronment in Mininet was used here to provide a well controlled
but realistic test bed. Mininet is used to create SDN network
topologies that consist of a number of OpenFlow-enabled
switches [14] that serve network traffic between various hosts
running a controllable traffic source. Tests are executed on i)
linear topology, where the number of hosts/switches is between
2-48, ii) tree topology, where the depth is between 2-8, iii)
single topology, where the number of hosts is between 2-128.
The emulated SDN network is connected to a virtual machine
instance of the POX [15] controller.

A. Test Manager

The test manager is a collection of Python scripts developed
to simulate numerous network scenarios and network traffic is
generated using the Scapy [16] library. The user testing the
environment is able to choose from the following options:

1) Stress the network or/and the SDN controller with
predefined traffic profiles by increasing or decreasing the

network load and/or SDN controller load at any given
stage. This is done by sending additional simultaneous
packets to through switches or SDN controller.

2) Choose from a range of packet types, such as ARP,
DHCP, DNS, ICMP, IPv4, LLDP, TCP, UDP.

3) Security attacks and their severity: MAC flooding,
DHCP attack, malformed packets flooding, Ping-of-
death, ARP cache poisoning.

B. Log Events

In this paper we recommend a list of log events that should
be considered in monitoring the SDN network. All of those
events were considered in experiments section.

SDN Controller logs: SDN controller is the ”brain” of the
SDN network, hence it can produce valuable log events in
terms of network monitoring, such as:

• Controller going up/down/went down - messages sent by
the controller upon a start up, shut down or restart.

• Echo request/reply - communication messages sent peri-
odically, usually every 5-20 seconds, between the con-
troller and all discovered switches on the SDN network
in order to keep the connection live.

• Link timeout and new link detected - these events are
triggered upon link creation or link failure. Link events
can be correlated with switch logs that consist of more
detailed information. It is important to note that the log
management system should provide the user with the
context of log event.

• New flow, new packet in, packet type, malformed packet
- one of the duties of the controller is to investigate the ar-
riving packets and validate their structure. The controller
outputs the type of packet that arrives at the controller
port. Some of these messages are generated from switch
messages and validated by the SDN controller.

• New switch discovered, switch disconnected, switch con-
nection closed - similarly to Link events, switch activity
on the network is reported by the SDN controller as well
as stored in switch logs for further analysis.

• Barrier request/reply - those messages are sent between
the controller and virtual switches. This ensures that the
switch processes all message dependencies and sends all
notifications for completed operations before proceeding
with new requests. When the switch completes an oper-
ation, it sends a reply message back to the controller.

Host Server logs: These statistics are collected from the
computing platform (e.g. virtual machine running the SDN
controller) by the log management agent. The agent in this
work collects platform metrics such as CPU and RAM usage.

• Current per core CPU usage including total user/system
usage and percentage of idle time - plotting and tagging
critical events related to CPU usage help us to understand
the state of the network and the controller.

• Current memory statistics including available, used, free,
active, inactive memory, buffer and cache stats - memory
in switches is utilised by various switch software com-
ponents such as storing data structures and SDN flow

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

Authorized licensed use limited to: University College Dublin. Downloaded on January 24,2023 at 09:39:01 UTC from IEEE Xplore. Restrictions apply.

tables. For example a switching system using a single
routing protocol with 200,000 routes learned, consumes
around 492 MB of memory [17].

• Network interface statistics: current network statistics
for each network interface including bytes sent, bytes
received, packets sent, packets received, error in, error
out, drop in and drop out. The log event manager should
be able to pick up those events per network interface and
use this data to report the traffic load on each component.

OpenFlow Switch logs: OpenFlow switch logs include
detailed activity of each SDN switch. Those logs can be
correlated with SDN controller logs to report unusual or
critical behaviour in the data plane.

• Connecting switch to the controller - is a standard mes-
sage containing detailed connection information about a
joining SDN switch.

• Connection closed by the SDN controller - in most of
the cases, this event is logged when the user intentionally
disconnects the controller from the network.

• Dropping packet in messages - drop of multiple control
messages due to queue overflow on the switch. This
can be considered as a critical event and the network
administrator should be alerted by the log management
platform to investigate this further.

• Added interface on bridge - is a standard event logged
by the OpenFlow switch containing details of a newly
enabled port.

• Percentage CPU usage by individual switch - indicates
the amount of resources used by the CPU of the switch
to run the switch’s operating system.

• Timeout events - are warning messages logged by Open-
Flow switch indicating a connection timeout. Those
events should be followed by wake-up events reported by
the switch, however if wake-up events are not discovered,
the network administrator should be able to correlate the
number of timeout events and the number of echo replies
reported by the controller in order to confirm the definite
timeout of the switch.

C. SDN Network Health Ranking

The tests presented in this work and a number of side
experiments are used to propose a preliminary SDN Network
health ranking scale based on symptoms gathered from log
intelligence.
Level 5 - No critical events observed, CPU usage and Memory
usage on both controller and network server are below a
defined threshold (50% in this case).
Level 4 - The CPU usage of the controller host or network
host is above 50%.
Level 3 - Controller went down, however it recovered and a
”controller up” event was discovered. Switch connection was
lost or link failure events were reported.
Level 2 - The CPU usage of the controller or most of the
network components is above the threshold of 70%. Open
vSwitches start to complain about packet drops.
Level 1 - Log management platform reported ”controller

down” events, but did not report ”controller up” events.
Log inactivity alerts enabled on the platform send warning
messages using the user feedback channel. Controller does
not send discovery packets.

V. RESULTS

In this work we consider two SDN scenarios to demonstrate
the functionality of our proposed architecture. Initially, the
controller is kept in an idle state for a period of time. The SDN
network emulated in Mininet is then connected to the SDN
controller and lightly loaded for a period of 10-20 minutes in
order to create a clear baseline of standard network behaviour.
After the warm-up period, test scenarios are triggered by the
test manager.

A. Scenario 1: Real-time switch activity monitoring

The cloud-base log analysis engine is used to extract the
values from the SDN controller logs and provide insight
into some of the processes in the network. Further grouping
of events allows us to monitor the workload per network
component, in our case - each OpenFlow switch. A linear
topology of 5 switches and 1 host per switch is constructed for
this experiment. The switch identifier is visible in the legend
of Figure 3 which depicts flows per second for each switch.

The test manager is instructed to start the simulation of low
(5 flows/second), medium (100 flows/second) and high (1000
flows/second) network traffic and to present the workload per
network switch. Sender and receiver nodes are located at least
1 switch apart from each other, in order to make sure that
the measurements for the intermediate switches are correctly
recorded. The results presented in Figure 3 show that it is
possible to obtain accurate switch workload measurements
using the extraction and analysis of the SDN controller logs.

B. Scenario 2: DHCP Starvation Attack

In this experiment DHCP packets are injected at the highest
possible rate for the duration of 60 minutes to prevent hosts
from gaining access to the network by denying them acquiring
an IP address from a DHCP server, or simulating a DOS attack
on a DHCP server. Our main goal is to effectively correlate
log events in real-time and evaluate the nature of the attack
triggered by a simulated malicious set of users.

The results for this scenario are presented on 3 graphs
(See Figures 4,5,6) that were generated in real-time. Graphs
presented are divided into four intervals:
Interval A is a representation of a baseline network behaviour.
In this work we decided to instruct the controller to install
10 flows on all the switches on every second. This activity
is not very costly as the controller consumes on average 6%
of available CPU resources on the controller host and 22%
of the host machine running network components. These low
levels of usage indicate that the system performance is not
being limited by the specific deployment scenario and give
confidence that the results are not being impacted by hardware
limitations. In this specific interval we do not observe any
packet drops complaints by the switches. Network status is

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

Authorized licensed use limited to: University College Dublin. Downloaded on January 24,2023 at 09:39:01 UTC from IEEE Xplore. Restrictions apply.

ranked at level 5, which corresponds to an excellent network
health.
Interval B shows the period in which the Test Manager carried
out a medium severity DHCP attack. In this work we use
Logentries tagging features to mark all the events listed in
”Log Events” section of this paper. The alerting system in the
Logentries manager reports unusual activity within the first 5
seconds of the attack and plots the average number of DHCP
packets in Figure 4. At the same time, all of the 5 available
Open vSwitches report in Figure 5 packet dropping events
during the duration of the test. The CPU usage increases by
64% on the controller host and it is now using 100% of the
CPU resources on the Mininet host. It is important to note that
we observe Open vSwitches reporting very high CPU usage,
however the controller logs do not report this unusual activity.
This is a great example of a remote controller failing to detect
new flow attack described in another work[6]. For example,
when a switch’s CPU is already saturated by an instantaneous
new flow attack, the actual outgoing number of new flow
requests (i.e. 100 pps) sent to controller can be far less than
the real incoming packet counts (i.e. 4000 pps). It results a
false positive decision that can be detected by proposed system
architecture. Network health status drops down to level 2.
Interval C is a representation of the Test Manager reducing
the number of DHCP packets sent per second by 50% for
the duration of 10 minutes and then increasing the number of
DHCP packets sent per second. This short intermediate test
is invoked in order to observe the activity reported by Open
vSwitches, which drop less amount of packets than previously.
Network performance improves, hence network health is at
level 4. Despite the fact that the CPU usage is still about
50%, there are no critical alerts.
Interval D is a representation of the test manger stopping the
DHCP attack and putting the network back to baseline traffic
load. Network health is ranked at level 5, which is an indicator
of a good health of an SDN network. This test is invoked in
order to make sure that our readings and analysis of logs are
correct.

It is also important to mention that the communication
between hosts in the network at the time of the attack was
lost, however the controller and switches recovered after
completing some of the tasks buffered during the attack.

VI. CONCLUSION

This work has shown the usefulness of cloud-based log anal-
ysis engines for the evaluation of SDN networks performance
for enterprise networks that are managed by a non-expert using
an off the shelf tool. The experiments presented here have
demonstrated how to monitor the network health and success-
fully identify when the system is being overloaded, identify
malicious attacks and identify if the system has recovered
successfully from an attack. We propose a list of logs for the
SDN controller that can be used as a reference by network
administrators and adapted, regardless on a network topology
or architecture. This preliminary work will be extended by
enlarging the knowledge base of log events from system

components and creating the Controller Feedback Channel
and create a policy language that can be used in network
environments using heterogeneous SDN controllers.

VII. FUTURE WORK

In this work we envisage extending from a simple alert-
based feedback to a human to an autonomous Controller Feed-
back Channel (CFC) as part of the architecture. This would
utilise the intelligence gathered by log management system,
and send high-priority instructions to the SDN controller based
on previously defined policies [18] in order to e.g. avoid the
single point of failure situation, recover from the malicious
activity, or stop unwanted behaviour on the network if the
controller is unable to do so.

ACKNOWLEDGMENT

Supported, in part, by Science Foundation Ireland grant
10/CE/I1855 and by Science Foundation Ireland grant
13/RC/2094 and by Enterprise Ireland Grant IP20140344.

REFERENCES
[1] M. Wang, V. Holub, T. Parsons, J. Murphy, and P. O’Sullivan, “Scal-

able run-time correlation engine for monitoring in a cloud computing
environment,” in Engineering of Computer Based Systems (ECBS), 2010
17th IEEE International Conference and Workshops on. IEEE, 2010,
pp. 29–38.

[2] A. Shalimov, D. Zimarina, and V. Pashkov, “Advanced Study of SDN /
OpenFlow controllers.” Computer-Communication Networks.

[3] GPLv2, “Cbench Benchmarking Tool.” [Online]. Available:
https://github.com/andi-bigswitch/oflops/tree/master/cbench

[4] OpenSource, “Hcprobe Benchmarking Tool.” [Online]. Available:
https://github.com/ARCCN/hcprobe

[5] C. Thorpe, C. Olariu, A. Hava, and P. McDonagh, “Experience of
developing an openflow SDN prototype for managing IPTV networks,”
in Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. IEEE, 2015, pp. 966–971.

[6] S. Song, “Improving network health monitoring accuracy based on
data fusion for software defined networking,” in Future Information
Technology. Springer, 2014, pp. 469–472.

[7] R. Ltd., “Logentries.” [Online]. Available: http://www.logentries.com
[8] Splunk, “Splunk Log Analytic Tool.” [Online]. Available:

http://www.splunk.com
[9] Logstash, “Logstash Log Analytic Tool.” [Online]. Available:

https://www.elastic.co/products/logstash
[10] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A

survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN
For. IEEE, 2013, pp. 1–7.

[11] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks.”

[12] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. Katz, “Fast and memory-
efficient regular expression matching for deep packet inspection,” 2006
Symposium on Architecture For Networking And Communications Sys-
tems, 2006.

[13] OpenSource, “Mininet Network Emulator.” [Online]. Available:
http://mininet.org

[14] OpenFlow, “he OpenFlow Switch Specification.” [Online]. Available:
http://OpenFlowSwitch.org.

[15] OpenSource, “POX Controller.” [Online]. Available:
http://www.noxrepo.org/pox/about-pox

[16] G. Philippe Biondi, “Scapy - packet manipulation tool.” [Online].
Available: http://www.secdev.org/projects/scapy/

[17] Cisco, “Memory Utilization on Cisco Catalyst 4500
Series Switches,” Cisco, Tech. Rep., 2011. [Online].
Available: http://www.cisco.com/c/en/us/products/collateral/switches
/catalyst-4500-series-switches/white paper c27-554637.pdf

[18] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

Authorized licensed use limited to: University College Dublin. Downloaded on January 24,2023 at 09:39:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Number of flows installed per switch (Source of data: POX controller logs)

Fig. 4. Network packets grouped by packet category (Source of data: POX controller logs)

Fig. 5. Drop Packet In events collected from the network switches logs. (Source of data: Open vSwitch logs)

Fig. 6. Average CPU usage. (Source of data: Log events collected from servers hosting POX controller and Mininet)

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

Authorized licensed use limited to: University College Dublin. Downloaded on January 24,2023 at 09:39:01 UTC from IEEE Xplore. Restrictions apply.

