Blockchain-based Network Slice Broker to
Facilitate Factory-as-a-Service

Abstract—The novel concept of Factory-as-a-Service (FaaS)
allows the agility of adapting the manufacturing process by
identifying the industry’s supply chain and user requirements.
To cater to FaaS, flexibility in networking and cloud services is
a must. 5G network slice broker is a third-party mediator that
caters to networking resource demand from clients to the service
providers. Thus, this paper introduces a secure blockchain-based
network slice broker to facilitate FaaS. The proposed secure
network slice broker (SNSB) provides secure, cognitive, and
distributed network services for resource allocation and security
service level agreement (SSLA) formation with coordination of
slice managers and SSLA managers. In SNSB we introduce a
federated slice selection algorithm with Stackelberg game model
and Reinforcement Learning (RL) algorithm to compute the real-
time and the optimal unit price and demand level. We provide an
extensive implementation and performance evaluation of SNSB
using the Katana slice manager and a custom SSLLA manager.

I. INTRODUCTION

The growing need for Industrial Internet of Things (IIoT)
will require scaling up or down in different technologi-
cal aspects and addressing the societal and environmental
changes [1]. Factory-as-a-Service (FaaS) allows the agility of
adaptation of the manufacturing process by identifying the
supply chain and user requirements in IloT. To enable FaaS
with the help of networking and cloud services, it is always
essential to have non-interrupting IT and telecommunication
services [2], [3], [4]. When an IIoT site is forming as FaaS, it
should scale up or scale down the operations against the new
engagements with higher flexibility. Similar to the adjustment
of other infrastructure and accessibility of different services,
networking and cloud services should also be flexible and
adapted to the time requirements. Instead of buying these from
a single service provider, the operations in FaaS will have
higher flexibility to acquire them from an open marketplace
that has access to multiple resource providers (RPs).

Instead of conventional network slice creation by one op-
erator, we propose a more democratic way of forming multi-
operator network slices based on the consumer requirements to
cater to FaaS. An intermediate third-party service is running as
a network slice broker to enable this slicing scenario. 5G net-
work slice broker (NSB) allows the dynamic interoperability
and resource trading requirements of market players such as
infrastructure providers, consumers, and mobile network oper-
ators in trading the network and computational resources [5].
Instead of having a centralized network slice broker, offering
brokering service as a blockchain-based distributed service
will bring higher flexibility and eliminate the single point
of failure [6]. To invoke the security services and meet the
security levels requested by the consumers, it is necessary to
integrate the predefined security service level agreements (SS-
LAs) [7] with the corresponding resource providers.

In the previous works, the concept of NSB is presented in
both centralized and distributed forms as the running proto-
types. At the same time, in the state-of-the-art, blockchain is
used as a facilitator to FaaS and even blockchain-based NSBs
are proposed for other applications. Although the blockchain-
based NSBs are proposed for general applications, they lack
applicability in a particular use case and the security con-
siderations like the invocation of SSLAs. Moreover, they do
not provide any cognitive slice selection mechanisms which
can formulate federated network slices based on the resource
demand and availability. Therefore, this paper introduces the
blockchain-based NSB to create federated network slices in
the context of sharing network resources in FaaS for IIoT
applications. Our main contribution is to develop the Secure
Network Slice Broker (SNSB) that provides distributed and
intelligent network services in resource allocation and SSLA
formation with the coordination of slice managers and SSLA
managers. To the best of our knowledge, this is the very first
research article that presents a secure and trustworthy network
slice brokering solution for FaaS as a blockchain-based service
using game theory and Reinforcement Learning (RL) based
selection algorithm together with a real-life implementation
in 5G networking environment by integrating Katana network
slice manager [8]. In the federated slice selection algorithm of
SNSB, we use a Stackelberg game model and RL algorithm
to compute the optimal unit price and demand level of each
resource category in real-time. The federated network slice
is created based on those obtained optimal values used as a
quantitative representation for the resource allocation.

The remainder of the paper is organized as follows: Section
IT discusses the related works. Then, Section III proposes the
brokering architecture for the FaaS use case and explains the
slice selection algorithm explicitly. Section IV evaluates the
slice selection algorithm and presents the prototype implemen-
tation. Finally, section VI concludes the paper.

II. RELATED WORK

As stated in [5], in addition to facilitating on-demand
resource allocation, NSB performs admission control based
on traffic monitoring and forecasting, including mobility,
based on a global network view. It configures radio ac-
cess network (RAN) schedulers to support multi-tenancy
use cases. According to 3GPP specifications and the initial
design in [5], the 5G Network Slice Broker is co-located
at the master operator-network manager (MO-NM), which
monitors and controls the shared RAN, and interacts with
the sharing operator network manager (SO-NM). Chaer et al.
[9] presents how the blockchain leverages the 5G networks
with potential opportunities for the 5G networks, including
infrastructure crowdsourcing, infrastructure sharing. Nguyen

et al. [10] presents a comprehensive survey on the integration
of blockchain for 5G and beyond networks.

Backman et al. [11] highlighted the significance of
blockchain as an additional trust layer for NSB. Valtanen
et al. [12] present an analysis of a blockchain-based slice
brokering use case as a resource configuration framework in
the perspective of industrial automation. Boubendir et al. [13]
proposed a federated operational architecture to share network
and IT resources to the consuming stakeholders.

Afraz et al. [14] defined blockchain as a tradable commodity
with the parameters such as RAN, computational resources,
and storage. Zanzi et al. [15] proposed NSBChain, which
is a hierarchical blockchain architecture for network slice
brokering. Nour et al. [16] proposed a blockchain-based net-
work slice brokering mechanism with anonymous transactions.
Antevski and Bernardos [17] proposed a distributed-ledger-
based solution for the federation of 5G network services
through smart contracts.

While evolving the above research efforts towards beyond
5G, the most significant improvement is to bring intelligence
by learning the network state and user satisfaction to form a
suitable network slice. With this requirement, the role of the
network slice broker also needs to be reformed as an entity
that operates with higher intelligence. The current state-of-the-
art brokering architectures do not provide real-time evaluation
of the resource availability and their pricing values offered by
different resource providers or do not consider any security
properties for network slice creation. Therefore, to bring the
intelligence for slicing technology in beyond 5G networks,
it is highly required to have a trusted and secured slice
brokering architecture that provides real-time services based
on the current network resource availability.

III. BROKERING ARCHITECTURE FOR FAAS

The former part of this section describes the role of the
network slice broker in a FaaS use case scenario together with
the proposed SNSB architecture and its workflow. Then we
provide the mathematical explanation for the slice selection
algorithm that we consider in the SNSB.

A. Usecase scenario

In this paper, we consider a use case scenario where a
blockchain-based network slice broker facilitates to enable
Factory-as-a-Service. A blockchain-based NSB is a distributed
trading platform to cater to federated network slices as re-
quired by each production site (Figure 1).

In our solution, NSB is a distributed service that collects
resource requests and security service requirements from each
production site and designs the network slice based on the
resource availability and ability to provide security services at
the resource providers. For that, NSB requires to keep records
of resource availability and security services provided by each
resource provider. NSB blockchain service should run on each
miner located at the production and resource provider sites.

The potential resource providers proposed in the SNSB
include MNOs, local 5G operators, and cloud infrastructure
providers who are willing to trade the resources for the service-
oriented factories that operate as consumers.

Networking and Cloud Infrastructure: Physical/Virtual Resources

RAN Computing

(Cloud Resources |

r
VNF/PNF] P

G 0

[Storage]

|Edge Cloud|

L)
o] e« -

L L A

v oF i
oy Network Slice [Common trading platform to cater network slices]
gy Broker -
& s y g

& A

Production site 1 Production site 2 Production site 3 Production site n

Fig. 1: Role of network slice broker to enable FaaS.

B. Proposed brokering architecture

The SNSB (Secure Network Slice Broker) architecture and
its core modules are presented in Figure 2. Prime Mover
collects the resource requests coming from different produc-
tion sites and forwards them to Mediator. Security Manager
is a security service blockchain (SSB) to protect the entire
brokering service from Denial of Service (DoS) attacks. When
the resource requests are coming from the tenants, Mediator
runs the slice selection algorithm by taking the updates of
resource availability and price, creating the Network Slice
Template (NST), and sending NST to Global Slice Manager.
Finally, the Global Slice Manager accumulates the slice with
the coordination of slice managers and SSLA manager, and

send the slice to consumers.
/Security Manager \
SNSB

Map security requirements
with available offers N
Provide security

services ‘
- Detect/Prevent - SSB

SSLA
DoS attacks (! > Manager
ediator =
Resource unit price database N
MNO1: Pricex Global Slice
MNO2: Price y E Manager m
x Slice
2 5 5 5 Manager
®
Game theory based b Croate NST 3 3 from MNO
selection a\gonthm;% - 2
= /| RiRed R T V
5 2 —— < \ /
Prime Mover _
Receive resource request

—_—| U

- Flow in initialization phase

e

Tenant
- Flow in operational phase

»
(Consumer end) ‘

Fig. 2: The proposed architecture of SNSB solution

C. Work flow of brokering architecture

The sequence of events executed from the initial stage to
the completion stage in our approach is depicted in the figure
3. Initially, a tenant sends a slice request along with their
desired security requirements (1) to the proposed framework.
Then, the Security Service smart contract verifies the slice
request against DOS attacks (2) and sends the confirmed slice
request with the security requirements to the SNSB. In the next
stage, SNSB runs the slice selection algorithm (4) to find the
optimal slice that tallies the tenant and security requirements.
The Slice Managers of the selected slice are notified by SNSB

(5). The SNSB acknowledges the SSLA manager that slice
has been instantiated and forwards the SSLA information (6).
After that, the Slice Manager is responsible for invoking and
offering the chosen optimal slice to the tenant (7). Afterwards,
the SSLA manager sends the SSLA establishment notification
to the tenant (8), based on the tenant’s security requirements.
Whenever an MNO adds/updates its network resources or the
unit prices of the resources, that particular information will
be updated by the respective Slice Manager of the MNO.
The security service smart contract checks the validity of the
updated request received by the resource provider against the
DoS attacks, based on profile information stored in the ledger.

\;_/5’
Security o
Tenant [Service Blockchain ‘ ‘ N ‘ ‘ N ‘ ‘ %
Slice Requester) (sSB) SNSB Slice Manager 1| [Slice Manager n| SSLA Manage!

RP resource synchronization
message verification against
DoS attack

(1) Tenant ——Network resource and unit price synchronization ———

resource request
with Security (2) Slice request verification
requirements against DoS attack
(3) Verified tenant
resource request

with Security
requirements

(4) Run slice selection
algorithm (check resource
availability and security
services)

(5) Slice selection
notification
(6) Notifies the slice is ready

(7) Slice creation and offer

(8) SSLA establishment notification

Fig. 3: The workflow of brokering architecture

D. Slice selection algorithm

We consider that a particular network slice blueprint is
created with n number of resource (or network functions)
categories. In a resource request created by a certain fog node,
u; denotes the amount of resource demand for it resource
R;, where i € {1,2,...,n}. There are m number of resource
providers such that O; denotes the j'" resource provider where
je{1,2,...,m}. The resource provider (or operator) O; sets the
pricing strategy {v; = [v;;4 € n : 0 < v;; < T} as the unit
price of i*"* resource, where v;; is the price offered and ¥ is the
maximum price. c is taken as the common and constant cost
resulting from the general operation and maintenance cost.

Hence, the expected utility (reward) by O; resource provider
can be presented as:

P; = iuivji - icui (1

In addition to that, Zv?é introduce 1a utility function P;,
which is the expected utility (reward) for R; resource category
requested by the miner node located at Fog Node (based on
the offer given by O; operator). To develop the algorithm, the
reward is assigned to each resource category as an indication
of its popularity (or demand level) among the consumers:

Uj
N
> ui
i=1

The fixed utility P is received as a reward by the miner
node for successful mining of a given service request with
respect to all the resource categories.

As described above, after receiving all the offers from the
resource providers with in a given period of time, the selection

P=P

2)

— Vjilli

algorithm first computes the total service demand of fog nodes
and set the offer prices to earn more profit to the resource
providers. This optimization problem can be formulated as:
max Pj(v;|u)
Uj

S.t. Yj > 0,

N N
E UVj; = E cuy
i=1 i=1

On the other hand, the miner nodes located in fog nodes,
need to maximize the reward received for each resource re-
quirement (category). Therefore, observing the price strategies
of resource providers, the selection algorithm will formulate
the optimization problem (i.e., to compute the optimum re-
source demand) of each resource category as:

3)

max P (u;|vji)
Uq
s.t. U; > O7
; 4)
P Nul > V)il

> U
=1

Accordingly, the mathematical model is formulated for two
sides in the Stackelberg game. The selection algorithm in
SNSB is responsible for updating both the resource providers
and the fog nodes about how they are able to continuously
modifying strategies to boost their utilities. The aim of the
Stackelberg game is to discover the Nash equilibrium, where
no player has intention to diverge from its strategy after taking
into consideration of its” opponent’s selection. In this problem,
the Nash equilibrium of the Stackelberg game is modeled as
below.

In order to show the feasibility of Stackelberg game, let v*
and u* be the optimal unit price of one resource provider
and the optimal resource demand for each resource cate-
gory. Therefore, the point (u*,v*) is considered the Nash
equilibrium point if it satisfies, P;(u*,v*) > P;(u,v*) and
P;(u*,v*) > P;(u*,v).

Verifying the distinctiveness and presence of the Nash
equilibrium in the Stackelberg game is achieved by taking the
second order derivatives of utility functions of Eq. 2 and Eq. 1
with respect to u; and v; as follows.

8°P, E
Qi = 72PL3 <0 (5)
Ou; (> ur)
keEN
62Pj 2P (N —1)P
el S Y
avjz ’Uj2 N - 0 (6)

According to the above equations and as described in [6],
P; and P; utility functions are stringently concave, and the
Nash equilibrium present in this Stackelberg game.

In the first part of the selection, the algorithm should be
run to fill the values given in Table 1. The table is updated
for all the available operators, their optimal unit prices as a
common indication for all the resource categories, and the
optimal demand. This table is taken as a reference to create
the federated NST and decide its composition with different
operators and resource categories.

TABLE I: Table for optimal unit prices of operators and
optimal resource demand from each resource category

Optimal resource demand
Operator | Optimal unit price Ry Ry Rs3 . IR

* * * * *
01 U1 Ui Ui2 Ui3 Uin

* * * * *
02) Ua1 Ugo Ua3 Uan

* * * * *
Om Um Umi Um2 Ums3 Umn

E. Multi-agent Reinforcement Learning algorithm

The Stackelberg game presented above can be solved as
a multi-agent reinforcement learning problem, where each
player in the game is represented by a learning agent. In
multi-agent scenario, each agent aims at maximizing its own
cumulative reward, which, in turn, maximizes the total reward
of all agents in the system. The key issue of multi-agent
reinforcement learning is the non-stationary learning problem
due to the effects of actions of other agents. Therefore, rein-
forcement learning agents often experience oscillatory problem
where optimal policy does not converge [18]. For this reason,
classical learning algorithms, such as Q-learning, have been
modified to achieve better conversion. The Win of Learn Fast
Policy Hill Climbing (WoLF-PHC) algorithm is proposed as
an extension of the Q-learning algorithm for more efficient
learning of the dynamic target [19]. Its characteristic is the
use of different learning rates depending on the game outcome,
which increases the convergence in multi-agent non-stationary
environment. This paper presents the application of WoLF-
PHC algorithm to the slice selection problem.

We denote u; € A; and vj; € A; the resource R; demand
action of fog node and the unit price set by resource provider
Oj for resource i, respectively, where A; represents the set of
all possible actions of the fog node, and A; set of possible
actions of the operator. In each time slot, the miners and the
resource provider take actions. At the start of the time slot
t, the operator and fog nodes take the actions, i.e., set the
price 'U;-i and demand uﬁ, based on the observed state of the
system. The state of the system for the fog node is described
as s; = v;f»i_l, which is the observed price for the resource
R; at the previous time slot. The state of the system for the
operator is defined as s; = [u!™'], where u!™' represents the
service demand of each fog node in the previous time slot.
The immediate reward is defined by (1) and (2).

Similar to the Q-learning algorithm, the WoLF-PHC algo-
rithm calculates the Q-table. In the multi-agent case, each
agent is updating its own Q-table. However, the action se-
lection in the win-of-learn-fast mechanism is different from
the classic e-greedy policy, where the action is selected based
on the values of the Q-table, i.e., maximum of the actions for
the given state in the exploitation phase and random in the
exploration phase. WoLF-PHC selects the action based on the
policy 7. This means that some action a in-state s is selected
with probability 7[s][a]. In the rest of the section, we describe
the details of the policy updates and the WoLF-PHC algorithm
steps on the example of the fog node agent. The operator’s
agent utilizes the same algorithm for its own set of actions,
states, and reward definitions as defined above.

After the all agents have taken actions and observed their

rewards, they update the Q-value. We denote the learning rate
of the fog node as a; € (0, 1] and discount factor as +; € (0, 1].
The Q-function of the fog node with the service demand wu;
in the state s! is updated as:
Qi(st, uf) = Q(s7, uf)+a; (Ptymazy, Qi A;) = Q(s7, uf))
(N
The WoLF mechanism, keeps track of the current average
policy 7;(s%, u;) which is used in order to decide the “win”
or “lose” of the policy m;(s!,u;). The fog node agent se-
lects its learning parameter 6; from 6; ,,;,, and 6; ;o5 Where
0;i.win < 05 0sc. If the agent is winning, 6; ,,;, updates the
policy cautiously. Otherwise, 0; jos¢ is used to learn fast from
the lost game. The policy is the winning policy if the following
criteria is met:
> mshu)Qilshu) > > milshu)Qilshug) (8

u;€EA; u;€A;

For the computation of the current average policy, N;(s!)
is used to record the occurrence count of states noticed by
the agent, that is increased by one each time the system is in
the state st. Then, the average policy of the fog node can be
updated as:

(85, ui) — sy, ui)
Ni(st)

l

Yu; € A;
©))

In the course of the learning process, the chance of the fog
node selecting a service demand is progressively increased,
which can elevate the expected reward, followed by the
reduction of the other actions [19]. Hence, the update of the
service demand policy of the fog node can be presented as
follows,

(s, i) = (s, ui) +

mi(shug) = mi(sh,ug) + A Vu; € A; (10)
where: , " 0,
A— —min(m; (s, u;), m), II (1
Dy AN (8,), \fﬁ)v otherwise
where | A; | is the number of actions and condition IT is:
M, # argma,;e 4, Qi(sh,) (12)

The WoLF-PHC algorithm steps for the fog agent are summa-
rized in Algorithm 1.

Algorithm 1 The WoLF-PHC algorithm for the fog node

1: Set O‘i,di’oi,wmﬁi,lose

2: Initialize ¢ = 0, Q;(s,u) = O,m;(s,u) =1/ | A; | and
mi(s,u) =1/ | A; | Vs,u

3: Repeat

4: Observe environment state s’

. Select action u} at random with the probability policy
mi(st, u;)

: Observe next state sf“ and immediate reward P;

: Update Q;(st,u!) according to (7)

. Update ;(st,u;) according to (10)

t=t+1

10: until

W

© 3 O

In the course of the training process, the agent updates its
strategy based on (7). Hence, the complexity of the training

process of each agent is in the order of O(S?A), where S
stands for the size of the state space and A stands for the
size of the action space. As for the complexity of the running
process of WoLF-PHC, considerably complex is the Q-table
look-up. Hence, the complexity of the running process of each
agent is approximately O(5).

F. Deployment of smart contracts

The proposed architecture leverages the slice brokering op-
eration by encoding the selection algorithm into smart contract
in the consortium blockchain. The consortium comprises of
factories and resource providers. As indicated in Figure 2,
the Tenants slice managers and SSLA managers connected
using Application Programming Interfaces (APIs). The slice
brokering service is deployed in the local blockchain nodes
with the APIs to invoke slice request(Stepl) from tenant end
as indicated in Figure 2. Inward transactions APIs are encoded
in the PrimeM over smart contract. Outward API invocations
(Step3) are encoded in the Mediator smart contract. There

’ Networking and Cloud Infrastructure: Physical/Virtual Resources ‘

L . J
[Operator 1] (Operator 2J == om
{:'CJ;} SSLA and Slice Manager API of resource providers {:C');}
Retrieving resources Slice and 1‘
......... SSLA request ﬂ 5‘
----------------------------- Updating ledger according to Equation 7,8 ’
oy

i Training smart

contract Updating the database ’5 5‘ ‘g
........................... ; of unit prices o
p ! "] %
e e) TNST -
Mediator smart : Global slice manager: T SSLA 5
contract smart contract = A > g S
.. — Tx-slice— 5 o
| B
..... P
Prime mover Tx-sliceRequest———» ‘
smart contract
.................. 5’
T o

[Production site 1] [Production site 2] [Production site 3] LI [Production site n]

Fig. 4: Smart contract interaction
are five different smart contracts that synergistically operate to

ensure the end to end operation of the slice brokering process.
The interaction between each smart contract illustrated in
Figure 4. The descriptions of the role of each smart contract
are as follows.

1) Training smart contract: Training smart contract per-
forms the training operation to formulate the Q values and
service demand policies. Algorithm 1 is encoded in the
training smart contract and updates of Q;(s!,u!) according to
(7) and update 7;(s!, u;) according to (10) performed by the
training smart contract. The corresponding values are stored in
the ledger. The training smart contract operates as an offline
smart contract without real-time slice brokering. The training
smart contract executes in a timely execution interval for the
synchronization of the training data set.

2) Prime Mover smart contract: This smart contract hosts
the inward API received from the consumer end. The inward
transaction T'Tgjjce Request Teceived by the tenant Tp, can be
defined as,

TxsticeRequest =< To, Ra, Timestamp > (13)

where the resource request R,
Ro ={u;...un} (14)
The ledger stores the data elements received from

TTsiiceRequest 1 the ledger to ensure non-repudiation
of the tenants regarding the resource request.

3) Mediator smart contract: This smart contract retrieves
the available resources and unit prices from the resource
unit price database for the computation of optimal resource
providers to deliver the optimal resource for the consumers.
According to Figure 2, the game theory-based selection algo-
rithm (Algorithm 1) executes in the Mediator smart contract.

4) Global slice manager: The global slice manager smart
contract creates the network slice template of the federated
slice. Global slice manager invokes the resource provider slice
managers and SSLA managers to instantiate the slice. The
transactions committed to the ledger in global slice manager
include T'x st which can be defined as,

Tenst =< T, {t; *wj ... up * Wy, }, Timestamp > (15)

where w; is the quantity of resources provided from the RP
7 (j=1 to j=m). The transaction committed into the ledger
ensures the integrity of formulated slice offer from the SNSB.
Furthermore, the SSLA transaction is defined as,

Trxgspa =< To, SSLA—IDentifier, Timestamp > (16)

and the slice instance transaction can be defined as,
Txsiice =< Ty, Slice — I Dentifier, Timestamp > (17)

5) Security manager smart contract: The security manager
smart contract performs the security verification of inward
transactions. Especially, the tenant resource requests which
exceed the maximum authorized request frequency and au-
thorized quantity limits will be blocked.

G. Deployment of blockchain nodes

SNSB proposed to facilitate the slice brokering as a service
to the intervening stakeholders of slice brokering operation in
the manufacturing process. Decentralizing the slice brokering
service towards the stakeholders is one of the key requirements
in SNSB. As indicated in Figure 1, the key categories of
stakeholders are twofold. The MNOs, local 5G operators,
and cloud service providers can be broadly categorized as
resource providers while the manufacturing plants which con-
sume the 5G resources in the manufacturing processes can be
categorized as consumers. Each stakeholder, either resource
provider or consumer requires to onboard to the slice brokering
ecosystem. After an agreement between the members of the
blockchain network, the stakeholder instantiates a blockchain
node locally with the established connectivity to the con-
sortium. The APIs of SNSB instantiates in parallel with the
instantiation of smart contracts in the blockchain node.

If the new member is a consumer who anticipates network
slice brokering for the manufacturing process, the member can
initiate inward resource requests to the new blockchain node
to invoke the SNSB for demanding federated slices to advance
the manufacturing operation. In contrast, if the new member
is a resource provider, the access can be granted to the local

~ Production site 1 |

| Blockchain node

B G
I =y

,‘4 Smart
’ contracts

Security manager

(Training , Provenance

Resource providers

Trust

Smart contracts

(Mediator

\
|
[Prime mover l
|
J

I CPU Storage Internet .
| Global slice manager 5, ntegrty
lockchain node
-
4 Distributed ledger of
M transaction records

Production site n
Fig. 5: Blockchain deployment architecture

services such as slice manager and SSLA manager expose
the available resources to formulate the federated slice(s)
for upcoming resource requests from the consumers. Each
stakeholder should contribute to the mining process and the
blocks mined within the intermediary steps of slice brokering
requires approval of each stakeholder to fulfil the consensus.
Figure 5 reflects the blockchain deployment model of SNSB
to facilitate FaaS.

Technically, a similar implementation can be performed us-
ing a public blockchain. However, the limitations of the public
blockchains such as higher block mining time, the overhead of
growing ledger and higher computational overhead for block
mining deviate from the proposed architecture from the public
blockchain. The heavy computations such as WOLF-PHC
algorithm execution and slice selection will incur execution
cost (gas cost) in public blockchain such as Ethereum. In
contrast, the consortium blockchain provides more flexibility
in block mining time and comparably less overhead in the
ledger storage which makes the proposed architecture mostly
suited for consortium type blockchain implementation.

IV. PERFORMANCE EVALUATION

This section provides the evaluation of the slice selection
algorithm and slice brokering architecture. First, the slice
selection algorithm is developed in Python. We evaluated a
simple example with two fog node agents and one service
provider agent as proof of the concept. The proposed solution
can be generalized to any number of fog nodes and service
providers. Later, the SNSB blockchain service is implemented
on Hyperledger Fabric by integrating a real network slice
manager and the SSLA manager.

A. Evaluation of slice selection algorithm

Initially, we assess the convergence of the WoLF-PHC
algorithm. For clarity, let the pricing action set of the resource
provider and resource demand action set of the fog node be
A; = (0,1,...,5) and A; = (0,1,...,4), respectively. The
quantitative factor of the cost of the unit resource in operator is
¢ =1, and the reward is P = 10. For simplicity, we made an
assumption of a uniform pricing strategy for each fog node. To
guarantee that the agent can converge to the optimal policy, we
set the maximum episode numbers as 5000. Additionally, the
learning rate is o = 0.2, which decides the degree to which the
altered Q-value overrides the previous one. The discount factor

w

optimal price

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration iteration

(a) Convergence performance of (b) Convergence performance
WOLF-PHC algorithm: Resource of WoLF-PHC algorithm: Fog
provider optimal price of one re- node/slice optimal demand of one
source resource

— resource provider's pi
fog node's 1 pi

08 fog node's 2 pi
500
06 400

—— resource provider
fog agent 1
—— fog agent 2

00 100

[1 2 k] 4 5
action 0

-

0 10 20 30 40 50
100 iterations

(c) Agent’s 7 values in the state
when other agents play optimal (d) Average reward for each agent
action

Fig. 6: Evaluation results of slice selection algorithm

v = 0.8 expresses how much we focus on future rewards. The
learning parameters 0; ,in and 0; ;.5 are set to 0.001 and
0.0025, respectively.

The WoLF-PHC algorithm exhibits fast convergence perfor-
mance owing to the automatic alteration of the learning rate,
as depicted in Fig. 6a and 6b, where the optimal resource price
and demand are plotted for each iteration of the simulation.
Both the resource provider and the fog node agent converge
close to the Nash equilibrium point-earning advantages from
the “winning or learning fast” mechanism. This exhibits a
good trend for selecting the optimal price based on the Nash
equilibrium point.

In Fig. 6c, the values of the 7 functions are plotted for
each agent after the system converges. In the figure 7, values
are given for the system’s state when all the agents perform
optimal actions in the previous instant. From the figure, it
can be seen that each agent has one action that is better than
the others, which is easily picked as the optimal (or the best)
action to perform.

Fig. 6d shows the average reward of each agent throughout
the learning iterations. The reward is averaged over 100
iterations per data point (i.e., 5000). The resource provider’s
reward is increasing as the agent is converging towards optimal
policy. On the other hand, the rewards of the fog nodes depend
on the winner of the game. Once the agents converge to the
optimal policy, it can be noticed that they obtain equal rewards
by assuring the system is fair.

B. Evaluation of SNSB blockchain service

Moreover, the discussion of the cloud The experimental
setup was developed to evaluate the proposed architecture in
a near realistic environment. We implemented SNSB selection
algorithm instances of the Hyperledger Fabric blockchain
network. Furthermore, virtual infrastructure is simulated using
Devstack, which is the developer version of OpenStack plat-
form. Katana slice manager has been integrated with SNSB to

SNSB-Hyperledger 5 —
3 . g Katana REST API
£51@)i[mm]] | |
ER - 9]
8 EE \’/\ ; Malicious —_
0 =R - NBI KATANA
=t FE=IE g] |||
EZVS E ‘§ :D offers 56 Notwork Slice Manager 3 g
< | E 2 II E filtered out |, v :8
a1 8 i g Open Source NI
= : MANO Layer o
Al iverm— ‘ = _&IMAND Y 2>
ediator . :
Global Slice] i o
Game theory based L) 2N)
selection algorithm manager -
* 0 o) 5
- ; # “PNFV||. “PMEC| |
L \] Prime mover \ | openstacic L& P'SDN \ P 4
Malicious resource requests filtered out Request | g Edge |
: slices i iy Telco Core Transport /WAN:
. > :
‘ Security manager smart contract L _____________________ 5G Infrastructure /
A I
> | 5 ~

=

I .I' 6 :\'J

Legititimate IoT nodes

"o ; 7 I —
[t AAA . > "
: i Lh Consume 5 <\ ‘o - 12
0 R S 5 —_ k¥ -

Fog nodes

icious IoT nodes

Mai

Fig. 7: Testbed implementation setup

invoke slice instantiation requests upon selecting the optimal
slice. Implementation setup of SNSB illustrated in Figure 7.

Blockchain service implementation: In the implementation
setup, the five smart contracts indicated in Figure 4 are
implemented on the Hyperledger Fabric blockchain platform
using Java programming language. MQTT and REST APIs are
used in the integration for the integration of each service.

Resource unit price database: The resource unit price
storage has been implemented on MongoDB database. The
MNOs can access the MongoDB storage for updating pricing
information. The mediator smart contract accesses the updated
pricing information to select the optimal slice based on the
consumer request.

RP infrastructure setup: Each RP deployed with the in-
stances of Katana slice manager, Open MANO, and OpenStack
for the near-realistic infrastructure integration. Katana slice
manager is integrated with REST API for slice creation.

NSBChain implementation for the comparison with
SNSB: We have performed a comparison on resource provider
utilization and federated network slice pricing with SNSB and
NSBChain. We selected NSBChain as it was developed using
blockchain and mostly related work to our proposal.

C. Latency evaluation on slice selection

14

121 I Slice selection operation 7
EISSLA establishment

10 [ISlice instantiation

Latency in seconds(s)

S N B~ N

0.5s 1.0s 1.5s
BlockTime configuration in Hyperledger

2.0s 2.5s

Fig. 8: End-to-end slice creation latency

We have implemented the system to evaluate the latency on
the proposed architecture’s end-to-end operation. The evalu-

ation has distinguished key sub-operations as slice selection,
SSLA establishment, and slice instantiation.

The tenant end is implemented with a software program
to simulate the consumer resource request scenario. The SSB
and SNSB, encoded in the Hyperledger blockchain platform,
have been integrated through APIs with Katana slice manager.
SNSB executes the sequential steps within the end-to-end
operation upon reaching the consensus within the blockchain
network. Block mining time defines the time interval to
generate a block that the consensus procedure has approved.
The configuration is defined as BlockTime in the Hyperledger
Fabric blockchain platform.

Figure 8 reflects the end-to-end slice creation latency
in different block mining time configurations in the SNSB
blockchain. We programmatically simulated the resource re-
quest generation from the IoT tenant end. The experiment
includes the end-to-end slice creation process from Stepl to
Step8, which is indicated in 3. Since we need to evaluate the
performance impact of SNSB, we fixed the SSB block mining
interval(BlockTime) and changed the SNSB block mining
interval for different values.

In this experiment, the software program generated a re-
source request and end-to-end latency measured on each trial
for a specific BlockTime configuration. We performed 100
trials for each BlockTime configuration and measured the
latency on slice selection(brokering) operation, SSLA estab-
lishment, and selected federated slice instantiation.

Figure 8 reflects the end-to-end slice creation latency in
different block mining time configurations in the blockchain.
The results show that the impact on the BlockTime is
significantly higher for the slice selection than the SSLA estab-
lishment and slice instantiation. The slice brokering operation
consists of more block mining steps in the proposed archi-
tecture, including resource request validation, resource offer
validation, and selection result validation. Hence, the block
mining impact of BlockTvme is higher in the slice selection
operation. Furthermore, SSLLA operation and slice instantiation
operation include also include block mining operations to
ensure non-repudiation by maintaining operation status as
blockchain transaction logs. Furthermore, ledger records in the

interactions with external parties such as SSLA services and
Katana slice manager insightful evidence in case of a dispute
resolution.

D. RP utilization comparison in SNSB vs NSBChain [15]

SNSB facilitates the federated slice creation based on the
optimal resource demand and optimal unit price determination
by the smart contract. The smart contract utilizes the Table
I in the creation of slice by federating multiple resource
providers. We programmatically generated the optimal values
and optimal resource demands based on the RL algorithm
(Table I)and utilized them for the experimental evaluation.
We also defined the fixed number of resource providers (m)
into 100 and scaled up the number of different resource types
from 10 to 100. The consumer resource request simulated by
programmatic generation on fixed-ranged(30 — 100) random
values for each resource parameter (u; to u,) quantity in the
experiment. The corresponding resource offers are generated
for all 100 resource providers and stored in the MongoDB
database. The same resource request and set of resources
offer input to NSBChain [15] and SNSB. For each offer,
NSBChain selects the network slice, considering the lowest
offer provided by the resource providers. In contrast, SNSB
provides a federated network slice, which has been formulated
based on the optimal unit prices and optimal resource demands
indicated in Table I. In this experiment, we have evaluated
the resource provider utilization percentage comparison with
SNSB and NSBChain. We generated 100 requests per trial for
each resource quantity(/N) configuration and calculated each
trial’s mean and standard deviation.

Figure 9 reflects the resource provider utilization percentage
on federated slice creation vs NSBChain. The NSBChain
always utilizes one resource provider with the lowest price
slicing offer, regardless of the number of resources in the
tenant request. Hence, the resource utilization remained 1% for
the NSBChain within the entire experiment. In contrast, SNSB
utilizes multiple resource providers, based on the criteria of Ta-
ble I and formulates the federated slice. The resource provider
utilization increases approximately up to 70 % when the num-
ber of resources (/V) has increased in the slice formulation.
The federated slice ensures the delivery of services which is
composed of optimal individual resources according to Table
I with competitive pricing. According to the results, SNSB is
ideally compatible with multi-operator/resource provider slice
brokering scenarios for future industrial use cases with a better
utilization percentage than NSBChain.

)
(=]
1

-} -SNSB - Federated slice
——NSBChain[15] -

(=)
(=]
T

\
y
v
[y
L}

Slice RP utilization(%)
[£
(=} (=}
: :
\I

L L L L L L L
10 20 30 40 50 60 70 80 90 100
Number of resources (N)

9: Resource provider utilization - NSBChain vs SNSB

Fig.

E. Consumer pricing comparison in SNSB vs NSBChain [15]

SNSB delivers the federated slice for a specific resource
request from the optimal unit prices in multiple resource
providers. SNSB determines the composition of different re-
sources from each resource provider based on the Table L
We have programmatically generated the resource requests
and offers to simulate realistic consumer demand scenarios.
A federated slice created by the SNSB is composed of the
optimal price offers of different resource providers. We define
the finalized price of the federated slice £ as,

N
Price, = E uiv*jf
i=1

where vf is the SNSB selected unit price of federated slice
for the parameter j. The Pricej, is the summation of all unit
prices multiplied by the demand quantities w; where 7 = 1
to ¢ = n. We have defined the final Price; to represent
in a generic pricing unit U, making the comparison clearer.
In this experiment, we evaluated the behaviour of the mean
Price;, when the number of resources (N) remained fixed
and the number of resource providers was increased. The
NSBchain selects the lowest price-providing resource provider
based on the unit prices multiplied by the demand quantities
of each resource provider as a single entity. In contrast,
SNSB considers the optimal unit prices and optimal resource
demands in Table I to offer the federated slice from different
resource providers. In the simulation, we provided identical
resource requests and offers to the NSBChain and SNSB to
compare the offer pricing determined by different algorithms.
We performed 100 trials (¢ = 1 to & = 100) for each
resource provider quantity setting(10, 20, 30... to 100). The
mean and standard deviation of the output prices are calculated
in different scenarios. Figure 10 reflects the behaviour of mean
prices obtained by NSBChain and SNSB.

(18)

S5
42210
= E
= —=
2 4l o R = = T -
3
5]
9
;3‘8 -1-sNsB
3] NSBChain[15]
£361 £
5 ~
3
= SE L
§%‘47 B e SR L0
151 Ter e
232 I I I I I I i\ ittt FooooF

10 20 30 40 50 60 70 80 90 100
Number of resource providers

Fig. 10: Offer price comparison - NSBChain vs SNSB

From the results, it is obvious that SNSB yields better
performance in consumer price with the delivery of federated
slices. Technically, the federated slice is composed of the
selected optimal prices from each resource provider. Therefore,
the federated slice provides better prices from the consumer’s
perspective. The mean prices offered by the SNSB decline
when the number of resource providers increased as per the
Figure 10. The main reason for price decline is the availability
of increased options for slice federation when the number
of resource providers has been increased. According to the
results, it is obvious that SNSB outperforms NSBChain by

opening the competitive slice brokering capability with better
pricing options for the consumers. The increased number of
resource providers can be anticipated in future industrial use
cases which leverage the connectivity with local 5G operators.

F. Candidate slice success rate of SNSB, [14] and [15]

Generally, the resource providers deliver the network slice
which corresponds to the consumer resource request based on
the conditions including the resource availability of requested
quantity and pricing compliances. For example, in auction-
based slice brokering use cases, the resource provider does
not trade if the minimum price for the unit has not been
proposed by any of the consumers. In addition to that, in
non-federated slice scenarios, the resource providers offer the
slice as a single commodity bundled with individual resource
unit availability quantities. If any of the resource parameters
do not comply with the demand quantity specified in the
resource request for that parameter, the offer is invalid as the
proposed slice will not be accepted by the consumer. In this
experiment, we have defined the success rate as the percentage
of possible candidate slice offers from the resource providers’
offers to perform slice selection. We have implemented [14]
and [15] and input the similar input of resource request and
resource provider offers to three algorithms, including SNSB.
We randomly generated the number of resource requests
and available resource volumes. For the evaluation of [14],
which is based on the original algorithm defined in [20], we
programmatically generated the appropriate ask\bid values on
each resource request scenario. We calculated the percentage
of successful slice offers, which can be used as a candidate
set to perform a selection of the optimal slice.

100+

80 -
[NSBChain[15]
-1-Afrazetal. [14]
SNSB (Our proposal) e -

60 -

40F

Success rate(%)

20~

M=50 M=100 M=500

Number of Resource Providers (M)

(a) Success rate on scaling up the number of resource providers
100 o

80+ .

60 -

~]-“NSBChain[15]
-1-Afraz et al. [14]
SNSB (Our proposal)

401

Success rate(%)

20k " \ »

‘ e S
N=20 N=30 N=40
Number of Resources(N)

0 +
N=10 N=50

(b) Success rate on scaling up the number of resources

Fig. 11: Success rate comparison results
Figure 11 reflects the comparison results of the evaluation.
Figure 1la indicates the success rate of three algorithms in
scaling the number of resource providers(M) while main-
taining the number of resources (N) as a fixed value within
the entire experiment. According to the algorithm, NSBChain
[15] and the work of Afraz et al. [14] indicates a fluctuation

in the success rate when the number of resource providers
increased. When the number of resource providers increased,
the number of single commodity type resource offers getting
increased and the candidate slices also increased in parallel
[15] and [14]. In contrast, the federate slice approach of
SNSB maintains a persistently higher success rate in lower as
well as higher resource provider scenarios. Furthermore, the
valid candidate single commodity type slices are filtered out
further in [14] with the non-compliance of ask\bid, which will
eventually reduce the number of valid candidates slice offers.
This evaluation simulates the widening of resource providers
beyond the MNOs towards local 5G operators.

Figure 11b indicate the successful slice candidate percent-
ages of three algorithms when the number of resources(N) is
increased while maintaining the number of resource providers
(N) as a fixed value. The experiment reflects a drastic drop
of successful candidates in [15] and [14]. The core reason
for such an observation is the limitations of delivering a
single commodity slice that fulfils all the demanding quantity
requirements and compliance ask\bid requirements in [14]. In
contrast, the federated slice approach of SNSB maintains a
higher success rate in resource scaled up scenarios.

From the results, the federated slice approach proposed in
SNSB outperforms the key related work [15] and [14] in terms
of successful candidate slice percentage. The key reason for
the distinguishing success rate of SNSB is the feasibility to
compose the slice with multiple resource providers to deliver
the consumer request.

V. DISCUSSION

A. Position of the proposed solution with the state of art

TABLE II: Features comparison with key related works

Features SNSH
[51] [13] [14] [15] [16] [17]
Blockchain-based decen- | X | X | X vV IV VvV
tralization

Optimal slice selection | X | X | X | vV |V |V | V

through federation

of multiple resource

providers

Request validation | X | X | X | X | X | X | V

against DoS attacks
Automated SSLA estab- | X | X | X [X | X | X | V
lishment for the feder-
ated slice

Experimental evaluation | X | X | vV |V |V | vV |V

Table II summarizes the limitations of the state of the
art and feature-wise comparison with key related works.
We considered the number of citations and implementation
feasibility, technical detail availability(pseudocode algorithms)
as the selection criteria. The resource requests verified against
DoS attacks in the proposal to ensure that the SNSB operation
for the legitimate resource requests persists with malicious
resource requests. From the numerical result analysis, the
proposed algorithms yield optimum mean federated slice cost
when compared with the state of the art using the game theory-
based selection algorithm. In the success rate oriented exper-
imental evaluations, SNSB yields a higher success rate when

compared with the state of art in both scenarios of scaling up
the resource providers (M) and scaling up the resources(N).
The higher success rate provides a broader selection scope
for the slice broker to extend the benefits towards consumer
with more competitiveness. Overall, the proposed architecture
outperforms the state of the art in feature-wise and numerical
figures for different conditions.

B. Implementation challenges and limitations

We propose a blockchain-based solution that can be im-
plemented using either public or consortium blockchain. The
implementation challenges in the proposed architecture were
originally linked with the blockchain incorporation. Few sig-
nificant implementation challenges are summarized as follows.

1) Block mining latency: This is one of the challenges
as indicated in Figure 8. The proposed architecture has to
align with the blockchain principles. Therefore, the transaction
execution latency includes sequential block mining latency.
However, we proposed to use a consortium blockchain, which
provisions the consortium members to adjust the block mining
interval. Providing powerful infrastructure as well as adjusting
the block mining interval to align with throughput reduces the
impact of block mining latency.

2) Computational overhead: The block mining requires a
set of cryptographic operations to be performed in the transac-
tion validation and the consensus process. The computations
in signature generation and verification incurs an overhead on
the fog computational infrastructure. For the data provenance
of the intermediary transactions in the slice brokering process,
the computational overhead requires to be accepted. Applying
more lightweight digital signature mechanisms reduce the
computational overhead in digital signatures.

3) Ledger storage overhead: The ledger size expands with
the expansion of transactions. Each member node requires to
keep a copy of the ledger and the increasing ledger size incurs
a storage overhead to the computing infrastructure. A storage
recycling and purging mechanism will eliminate the ledger
expansion storage overhead.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the SNSB slice brokering
architecture to facilitate FaaS, considering a multi-operator
multi-tenant scenario. SNSB is a blockchain-based distributed
service that creates federated network slices using a slice
selection algorithm and offers secure network slices adhering
to the predefined SSLAs. The slice selection algorithm is
developed as a Stackelberg game that takes updates from an
RL algorithm. The results of the RL algorithm’s performance
in the simulated network slicing scenario show that fog node
agents and resource provider agents can efficiently solve opti-
mization problems to find the optimal price and demand of the
resource. Since the complexity of the WoLF-PHC algorithm
is low, the slice broker has good scalability as the number of
players increases. In SNSB, we encoded the slice selection al-
gorithm as smart contracts to enable decentralized operational
capability and ensured non-repudiation. The implementation
and evaluation results prove that SNSB outperforms state-
of-the-art blockchain solutions in terms of resource provider
utilization, lower-priced federated slice formulation, as well as

increased success rate for slice selection. We have also pointed
the limitations and challenges of proposed work. Finally, we
distinguished the advancement of our work in a feature-wise
comparison which will ideally fit our work for future industrial
application scenarios.

The future work focuses to investigate the potential to
eradicate the limitations identified. The storage scalability is
one of the features to be improved in the proposed architecture.
Moreover, the privacy of transaction data which also provides
verifiability in dispute resolution is a potential future work.

REFERENCES

[11 A. H. Sodhro, S. Pirbhulal, and V. H. C. De Albuquerque, “Artificial
intelligence-driven mechanism for edge computing-based industrial ap-
plications,” IEEE Transactions on Industrial Informatics, 2019.

[2] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6g networks,” IEEE Transactions on Industrial Informatics,
2020.

[3] K. Kaur, S. Guo, M. Chen, and D. Rawat, “Transfer learning for 5g-
aided industrial internet of things,” IEEE Transactions on Industrial
Informatics, 2021.

[4] N. Kumar, S. Aggarwal, and P. Raj, The Blockchain Technology for
Secure and Smart Applications across Industry Verticals. Academic
Press, 2021.

[5] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From Network
Sharing to Multi-tenancy: The 5G Network Slice Broker,” IEEE Com-
munications Magazine, vol. 54, no. 7, pp. 32-39, 2016.

[6] H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, and Y. Qian, “Resource trading
in blockchain-based industrial internet of things,” IEEE Transactions on
Industrial Informatics, 2019.

[7] C.-Y. Lee, K. M. Kavi, R. A. Paul, and M. Gomathisankaran, “Ontology
of secure service level agreement,” in 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering. 1EEE, 2015.

[8] “Katana Slice Manager,” https:/github.com/medianetlab/katana-slice-
manager/wiki, Accessed on 28.12.2021.

[9] A. Chaer, K. Salah, C. Lima, P. P. Ray, and T. Sheltami, “Blockchain for

5G: Opportunities and Challenges,” in 2019 IEEE Globecom Workshops

(GC Wkshps). 1EEE, 2019, pp. 1-6.

D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne,

“Blockchain for 5G and beyond Networks: A State of the Art Survey,”

Journal of Network and Computer Applications, p. 102693, 2020.

J. Backman, S. Yrjold, K. Valtanen, and O. Mdmmeld, “Blockchain

Network Slice Broker in 5G: Slice Leasing in Factory of the Future

Use Case,” in 2017 Internet of Things Business Models, Users, and

Networks. 1EEE, 2017, pp. 1-8.

K. Valtanen, J. Backman, and S. Yrjold, “Creating Value through

Blockchain Powered Resource Configurations: Analysis of 5G Network

Slice Brokering Case,” in 2018 IEEE Wireless Communications and

Networking Conference Workshops (WCNCW). IEEE, 2018.

A. Boubendir, F. Guillemin, C. Le Toquin, M.-L. Alberi-Morel,

F. Faucheux, S. Kerboeuf, J.-L. Lafragette, and B. Orlandi, “Federation

of Cross-domain Edge Resources: A Brokering Architecture for Network

Slicing,” in 2018 4th IEEE Conference on Network Softwarization and

Workshops (NetSoft). 1EEE, 2018.

N. Afraz and M. Ruffini, “5g Network Slice Brokering: A Distributed

Blockchain-based Market.”

L. Zanzi, A. Albanese, V. Sciancalepore, and X. Costa-Pérez, “NS-

Bchain: A Secure Blockchain Framework for Network Slicing Broker-

age,” arXiv preprint arXiv:2003.07748, 2020.

B. Nour, A. Ksentini, N. Herbaut, P. A. Frangoudis, and H. Moungla,

“A Blockchain-based Network Slice Broker for 5G Services,” IEEE

Networking Letters, vol. 1, no. 3, pp. 99-102, 2019.

K. Antevski and C. J. Bernardos, “Federation of 5G services using

Distributed Ledger Technologies,” Internet Technology Letters, 2016.

L. Busoniu, R. Babuska, and B. De Schutter, “A Comprehensive Survey

of Multiagent Reinforcement Learning,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 2008.

K.-S. Hwang, C.-J. Lin, C.-J. Wu, and C.-Y. Lo, “Cooperation Between

Multiple Agents Based on Partially Sharing Policy,” vol. 4681, 2007.

N. Afraz and M. Ruffini, “A sharing platform for multi-tenant PONs,”

Journal of Lightwave Technology, vol. 36, no. 23, pp. 5413-5423, 2018.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

