FlowVista: Low-bandwidth SDN monitoring driven
by business application interaction

Bartlomiej Siniarski, John Murphy and Declan Delaney
UCD, School of Computer Science, Belfield, Dublin 4, Ireland
bartlomiej.siniarski @ucdconnect.ie, john.murphy @ucd.ie, declan.delaney @ucd.ie

Abstract—Large enterprises are moving towards Software
Defined Network (SDN) adoption, where business-critical applica-
tions are being deployed on top of highly programmable network
components and orchestrated by a single or multiple controllers
using network protocols, such as OpenFlow or NetConf for com-
munication. Just like in traditional networks, low-cost monitoring
solutions need to be developed for SDN. The issue of inaccurate
network traffic tagging and amount of overhead associated with
using traditional monitoring techniques based on packet sampling
or Deep Packet Inspection (DPI) need to be addressed. These
traditional techniques are no longer satisfactory for monitoring
in SDN. This paper presents FlowVista - a lightweight solution to
identify flows using the SDN Northbound interface and address-
ing flows rather than packets. The high flow matching accuracy
is achieved by interacting directly with business application
residing in the application layer and translating its high level
information to low level network flows in a non-invasive fashion.
FlowVista is tested using Voice over IP (VoIP) as a business-
critical application in both real and simulated networks. In
addition, the portability across various platforms, low bandwidth
utilization characteristics and integration with many components
native to SDN makes FlowVista suitable for those who want to
analyze SDN traffic without having to attach expensive tools that
often have limited visibility and granularity.

I. INTRODUCTION

Traffic monitoring is an integral element of networks and
systems management. Monitoring tools strive to provide in-
formation that can be later used to evaluate the Quality of
Service (QoS), detect faults and improve security. Traffic mon-
itoring in traditional networks is a well researched area, where
many applications were developed in order to aid network
administrators in their day-to-day operations. Some of them
include solutions built with the use of packet sampling or Deep
Packet Inspection (DPI) implemented in software or hardware.
However, while trusted by in industry the computational
requirements of traffic monitoring continue to impact network
performance significantly. Resource intensive techniques, such
as sFlow [1], NetFlow [2] or Zabbix [3] require extra CPU and
bandwidth, leaving administrators with a constant compromise
between accuracy and overhead. The amount of additional
resources required to implement monitoring techniques listed
above, especially in the multi-vendor environments, where
switches or routers may be supplied by various manufacturers,
are directly associated with high cost and potential compati-
bility issues.

The real reason for monitoring in the first place is to
ensure the correct operation of business-critical applications

and resolve application performance problems before services
are noticeably affected. One of the main goals in this work is
to provide the reader with set of techniques that can aid faster
troubleshooting of networks, but also provide a platform to
automate corrective decisions. This work delivers all the means
necessary to deploy low-cost monitoring solution without
compromising between accuracy and overhead in Software
Defined Networks (SDNs).

Nowadays, Customer Relationship Management (CRM) ser-
vices, Voice over IP (VoIP), video conferencing, and other
business-critical applications are deployed on top of SDN in
order to achieve the global visibility of the network. SDN
enables highly programmable networks with a high level of
transparency unlike traditional networks allowing the manage-
ment of flows on each component in the network. Network
impairments can be calculated using statistical information
provided by each SDN enabled switch. Unfortunately, borrow-
ing monitoring techniques developed for traditional networks
and placing them in SDN, may cause a large overhead due to
large amount of queries exchanged between the controller and
switches in the network. New techniques should be developed
in order to reduce the amount of resources required to monitor
application specific traffic. One approach to minimize the
overhead is to filter out traffic based on feedback arriving
directly from the business application, so that the application
becomes the main source of information used to decide on
which flows in the network should be monitored. Based on
this feedback we can identify switches that require monitoring.
The management decisions are still made by the controller,
not the service itself, however, the controller gains greater
visibility in the network. Ideally the monitoring and decision
making should be completed without the need for packet
classification. This work presents FlowVista: SDN monitoring
platform equipped with out-of-the-box techniques used to
identify traffic flows in a non-invasive fashion.

In our view VoIP is in an early adoption of SDN, hence it
became our main use case in our experimental evaluation. The
arrival of VoIP technology was well received by medium and
large enterprises due to a significantly lower usage cost of VoIP
phones in comparison to expensive and hard to manage legacy
phones. An issue of low call quality however, is still not solved
in large enterprise as weak links often contribute to overall low
call quality. Furthermore, the legacy and current monitoring
techniques are unable to find the exact location of quality

Authorized licensed use limited to: University College Dublin. Downloaded on January 25,2023 at 07:48:28 UTC from IEEE Xplore. Restrictions apply.



degradation or they are overweighted as they monitor all traffic
in the network, even flows that may not be of an interest to the
network administrator. This research addresses those issues by
accurately identifying flows within the network. By monitoring
these flows using non-invasive techniques, such as [4] and [5]
the cost of monitoring is significantly decreased.

This work makes the following contributions:

1) We propose techniques to identify and filter out appli-
cation specific flows based on information provided by
business application using Northbound APIs, without
performing DPI or packet sampling.

2) We show that flows can be identified accurately using
only those functions shipped with SDN and network pro-
tocols, such as OpenFlow or NetConf, making it robust
and suitable for large scale multi-vendor environments.

3) We evaluate the proposed technique by deploying a
realistic VoIP telephony system on top of SDN in the lab
environment using both physical and simulated testbeds.

II. RELATED WORKS

Currently, there are several choices for traffic monitoring in
traditional networks, that are very often applied in the SDN.
Among the most popular are sFlow, NetFlow and Zabbix -
tools that are installed on dedicated machines, switches or
routers and often rely on flow replicators deployed in the
network. Our study of those solutions shown that these tools
use either systematic or random packet sampling approach
on all flows that are in fact very accurate, however in order
to gain high accuracy, large amount of packets need to be
sampled and forwarded to analytic engines, which may affect
the performance of the network. Ideally, there should be no
compromise between the accuracy and cost, or at least the side
effects of gaining high accuracy should be minimized.

In order to reduce resource consumption, approach different
to packet sampling and DPI needs to be developed. One of
such ways may be to use high level identifiers, similar to
a solution presented by Polcak et al. [6], where the results
showed that High Level SDN approach is not only faster,
but operational costs can be reduced. The performance of
any monitoring solution can be further improved by removing
enhanced hosts and tools such as DPI engines, IPFIX probes
and other types of collectors.

Jarschel et al. [7] shows the benefits of application control
plane, where applications running on top interact with the
network itself. The application-state information is used by
the controller to choose the best path in the network. Authors
were able to achieve reduced bandwidth consumption in the
initial ramp-up stages of the transmission when applying to
the YouTube streaming application, which is very dynamic,
just like VoIP traffic. The initial results were satisfactory
however, this approach requires dedicated machine or array of
machines used to gather helpful information from the running
applications and additional computing resource in the control
plane to perform packet analysis task.

sFlow, can be used to monitor business-critical applications
such as voice, data, video, without having to employ multiple

monitoring applications for that purpose. sFlow is imple-
mented in hardware (network switches/routers) and hence it
can operate at line speeds without impacting the switch per-
formance considerably. The sampling is done at the hardware
ASICs, which makes it simple and accurate. The packet flow
sampling mechanism carried out by each sFlow instance must
ensure that any packet observed at a data source has an equal
chance of being sampled, irrespective of the packet flow to
which it belongs. Taking a sample involves either copying the
packet’s header, or extracting features from the packet. The
biggest drawback of sFlow, as well as Cisco’s NetFlow is that
all devices in the network need to support those technologies
for a comprehensive and complete network analysis.

OpenNetMon [8] - OpenFlow based controller module uses
the idea of per-switch monitoring to enable fine-grained traffic
engineering. In order to obtain network metrics, probe packets
are send every measuring round. However, it is not possible
to measure the performance of each link on a per-flow basis,
but only the performance of probe packets being injected onto
each path in the network, where there could be many flows in
one path.

In another work [5] authors propose the per-link moni-
toring and investigate the ability for the SDN controller to
report intermediate MOS (iMOS) for a given set of calls by
calculating accurate loss rates and using the simplified E-
model formula detailed in the paper. That work uses OpenFlow
switch statistics request, and evaluates the cost associated
with sending such messages to all switches in the network.
It establishes that the overhead is very low, yet it linearly
increases as the number of switches in the network increase.
The limitation of that work is that every active and non-active
switch is queried every second, and even that it outperforms
OpenNetMon as no probe packets are injected, other methods
for flow selection should be developed in order to reduce the
overhead.

A critical aspect that is lacking in the literature is a
lightweight solution/mechanism to identify possibly interest-
ing traffic. This narrows the monitoring scope further reducing
the effect of monitoring in the network.

III. SYSTEM DESIGN
A. General architecture and concept

There are four major components in the envisaged SDN
architecture presented in Fig. 1. Application layer remains
placed on top of the control plane and runs applications
such as VoIP, Video, FTP or other applications required by
the business. In this work we are assuming that all of the
northbound applications are equipped with Application Pro-
gramming Interface (API) extensions that allow other services
to communicate with them. If an API service is not a part of
a business application, it would have to implemented in order
to work with FlowVista. This can be seen as a limitation,
however in today’s cloud driven network environment, we
observe a growing trend in API service implementation, as
once you have an API you can easily move and launch
your cross platform applications and scale up. Application

Authorized licensed use limited to: University College Dublin. Downloaded on January 25,2023 at 07:48:28 UTC from IEEE Xplore. Restrictions apply.



layer communicates with the control layer using Northbound
APIs. In the SDN, applications communicate directly with
the controller, however if FlowVista monitoring module is
enabled, it acts as a proxy between the application and the
controller.

APPLICATION
LAYER
VoIP Video CRM Other
E M
= @ CONTROL
- Routing module LAYER
SDN Controller FlowVista
/ \ \ INFRASTRUCTURE
A - LAYER

Fig. 1: Business application interacts with FlowVista imple-
mented in the control layer and translates high level infor-
mation to low level rules using network protocols such as
OpenFlow or NetConf.

As shown in Fig. 1, two controller modules are used in this
work. The FlowVista is responsible for matching flows and
gathering statistics from SDN switches and routing module is
used to assure the most efficient path calculation, however the
implementation of routing module is not a subject in this paper.
The communication between modules and the application is
achieved through Northbound API, hence no further proxy is
required. OpenFlow protocol is used for southbound commu-
nication between the control layer (SDN controller) and the
infrastructure layer (physical network devices) in this work,
however FlowVista is not limited to OpenFlow only. In this
work we were able to avoid using any DPI tools, Quality of
Experience (QoE) and monitoring hardware middle-boxes, that
impose extra overload on network devices and links in the
network. In addition to this and unlike that which is presented
by et al. Thorpe [9] there were no modifications made to the
switch firmware. Instead, native SDN methods were combined
in a novel way and used to calculate the per-link and per-
application QoS at the minimum cost. This type of architecture
utilizing both Northbound and Southbound APIs allow the user
to not only detect flows from A-B, but also identify unique
flows in a multi-flow session.

B. Working example using Asterisk

Asterisk [10] is an open source framework for building com-
munications applications and is currently used by nearly 50%
of all open source VoIP telephony applications and services.
The proposed techniques for filtering application specific flows
can be better presented using VoIP as an example of business-
critical application.

When a new call is established by Asterisk, usually two
channels are created for each call to allow bi-directional
communication, which means that two or more flows (in case
of a video call) are created in the network. When a call is
registered, a list of active calls gets updated in the Asterisk
server. This list contains high level call information such as
all active channels including user names, IP addresses, MAC
addresses or other fields such as office location or priority
settings. FlowVista is able to query the list of channels and
extract call characteristics. It will then check if the most recent
call is currently being monitored, and if it is not it will
process the high level information by converting it to SDN
controller friendly format - that is from high level JSON to
OpenFlow match rules in our case. Flows in this scenario are
matched using IP and MAC address of each user. At this stage,
traditional models would use DPI or gather sample packets
from each flow on the switch in order to find application
specific traffic, however as we established this operation
comes with an extra load on the network. Instead, Flow Vista,
queries all switches for matching flows using Southbound API
and if successfully matched the list of switches containing
matched flows is generated. Correct identification of active
switches allows further calculation of flows for which the
network statistics should be obtained, ideally every second.
The decision to set the polling frequency to one second was
motivated by the results of a study in [5], however it should
be adjusted based on the traffic characteristics. The main
advantage of the proposed system is that we are able to filter
out only those switches carrying a VoIP channel. It means
that unless we explicitly ask the module to monitor other
flows, there will be no queries send from the monitoring
module to those switches that are not directly involved in the
application specific traffic. It has been noted by us, that most
applications placed on top of SDN, tend to impose the lifetime
for network flows, usually denoted in seconds. It means that
if a call is ended, and the value of flow lifetime is set to for
example 100 seconds, the monitoring module will continue
to query the flow for statistics until the flow expires. This
issue is addressed in FlowVista’s implementation by gathering
feedback directly from the application in real-time, so that
when call is terminated, FlowVista will stop the monitoring
of that specific flow immediately. Once flow statistics are
obtained, iMOS for each call can be calculated as show by
Siniarski et al. [5]. The workflow described above is visualised
in Fig. 2.

IV. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

To evaluate the correctness, scalability and overall per-
formance of FlowVista, multiple tests were carried out in
two isolated environments. First, we aimed to show that
proposed techniques can be implemented in VoIP over SDN,
hence an industry-grade VoIP system was built using physical
equipment only. The absence of emulation factors allowed
us to obtain the most realistic results for a small scale
Enterprise VoIP network. It was also necessary to test the
proposed solution in terms of scalability, hence in later stages

Authorized licensed use limited to: University College Dublin. Downloaded on January 25,2023 at 07:48:28 UTC from IEEE Xplore. Restrictions apply.



e | Asterisk
i New call estabhsh_ed _by Asterisk VoIP | Py
3 application Y
L — — — e —— — s — -

+ FlowVista
U et e R ¥ Process
. List of active calls updated
L.

Continue monitoring or stop if
call is dropped

Check if the most recent
call is currently monitored

Calculate and report
intermediate MOS using
non-invasive methods

Interrogate Asterisk server for channel
details using Northbound API

Get link statistics using flow
¢ statistics requests
Convert high level call information to
controller flow identifiers and use
Southbound API to query all switches for
matching flows

Succesfuly found flows
YI

NO

)
FOR EACH LINK

Find all intermediate links used
by the channel or set of channels

Y
FOR EACH SWITCH

Generate list of switches
containing matched flows

Report unmatched channels

Fig. 2: Sample workflow using FlowVista and Asterisk as a
business application.

of experimental evaluation, the network emulator was used to
create a much larger network.

A. Physical environment

The layout of physical testbed used in this work is depicted
in Fig. 3. It consists of several dedicated hardware and
software components. The industry-grade SDN controller -
OpenDaylight [11] is running on a 8-core, 24Gb RAM, Dell
T5500 server. Asterisk VoIP server is deployed on a 4 core
Dell Optiplex 960. Top rack switch (Netgear FS562T) is
directly connected to 4 OpenFlow enabled ZodiacFX switches,
Asterisk VoIP server and the SDN controller. Two dedicated
machines were connected to the edges of the network and used
to run Zoiper - VoIP client widely used by businesses around
the globe. Zoiper clients use Asterisk server to set up calls, just
like in a real-life VoIP telephony, except that the VoIP system
is now deployed over SDN, so it uses OpenFlow 1.3 protocol
to establish connections and manage network operations.

B. Emulated environment

The high cost of VoIP and SDN enabled switching equip-
ment limits the size of network topology that can be deployed
for testing in the lab environment, hence further scalability
and performance tests were carried out in an emulated network
using Mininet [12]. The linear topology of 4 switches was used
for flow matching performance tests in section IV-C1 and the
topology of 15 switches was used for the bandwidth overhead
calculation in the experiments section IV-C2.

Asterisk VolIP Server Controller link

= e Data link
(111111 o]
(2222001 @ APPLICATION
%r\ LAYER
SDN Controller
FlowVista
CONTROL
LAYER
NETGEAR [ToR Switch
l gé;’; ZodiacFX | :é?’;
INFRASTRUCTURE
VolP Phone VolP Phone LAYER

Fig. 3: Physical testbed is built using dedicated hardware.
Network switches in the network are OpenFlow enabled and
connected to SDN controller, VoIP phones and VoIP server.

Both physical and emulated topologies were managed by the
same version of SDN controller - OpenDaylight Beryllium.

C. Experiments description

1) Flow matching performance: Two test were designed
to verify FlowVista’s ability to accurately obtain channel
information produced by Asterisk and finding matching flows
on network switches.

In the first test 4 ZodiacFX switches were used to measure
the time it takes to match network flows depending on the
number of simultaneous searches and the number of active
flows installed on the switch. This test was designed to
establish a baseline in our experiments. It is important to note
that the maximum number of flows supported by ZodiacFX
switches is approximately 512 depending on the network layer
used for matching. Since, layer 2 identifiers were used to
match flows, the maximum of 350 flows were possible to
install on each switch. In this test, the number of simultaneous
searches was increased from 1 to 10 and at each step the
number of active flows installed on the switch was increased
from 1 to 350 in steps of 1.

In the second test, 4 physical switches were used initially,
however since the maximum number of flows is relatively low
to satisfy scalability tests, emulated environment had to be
used in order to extend the evaluation of the time it takes to
match flows depending on the number of active flows on the
switch. In this test, flow rules had been incrementally added on
each switch, where single match request was send after every
10 successful installations. There were two objectives in this
test. Firstly, what is the performance of FlowVista in terms
of the time it takes to match flows as the number of active
entries on the switch increases. This is an important metric
that can be used in early stages of network design. Secondly,
what is the relationship between the number of switches in the
network and the flow matching time.

Authorized licensed use limited to: University College Dublin. Downloaded on January 25,2023 at 07:48:28 UTC from IEEE Xplore. Restrictions apply.



In both tests we ensured that FlowVista sends match re-
quests for flows located at the bottom of each flow table, so
that the switch has to perform a full table search to account
for the worst case scenario.

2) Bandwidth overhead: Total of three performance tests
were designed, to measure the effects of using FlowVista
versus other well known solution, in this case - sFlow, all
in terms of bandwidth overhead. Each test involved gener-
ating VoIP traffic between random hosts in the network and
gathering network statistics using both sFlow and FlowVista.
Initially, every switch in the network was sFlow enabled,
however sampling and polling functions on switches that are
not involved in VoIP traffic forwarding were switched off, in
order to accurately match the number of switches queried by
the proposed solution. Furthermore, the same switches were
selected for both sFlow and FlowVista.

The main goal of these experiments was to compare pro-
posed solution with another monitoring technique widely used
in the SDN space. Another objective is to understand the
amount of bandwidth utilized during the execution time of
monitoring functions in the SDN, and how this can be reduced.
Sampling rate and polling frequency settings used for each test
are presented in Table L.

TABLE I: Sampling rate and polling frequency settings used
in experiments detailed in section IV-C2

sFlow sFlow . FlowVista

. . FlowVista .
Test # | sampling polling . polling
sampling rate

rate frequency frequency
1 1:1 1 N/A 1
1:10 10 N/A 1
3 1:100 10 N/A 1

V. RESULTS

A. Flow matching performance

Fig. 4 shows that the time it takes FlowVista to match
network flows highly depends on the number of simultaneous
searches, which can be further optimized using multiprocess-
ing in the implementation of the controller. It is interesting
to note that the time it takes FlowVista to match flows on
ZodiacFX switches remains unchanged after 30 active flows
are installed on the switch until the maximum capacity of
flows is reached. It means that ZodiacFX switches are well
capable to work at 100% load and support maximum number
of entries without the performance loss, however it also raises
scalability questions.

It was therefore crucial to evaluate the performance
of FlowVista in a much larger environment using Open
vSwitches, which support greater amount of flows. Fig. 5
shows the time it takes to match single flow in the network
of 1-4 switches, where each switch contains 1-60000 active
flows. The upper boundary reflects the average number of
flows observed in large enterprise network. The number of
flows was incremented by 10 at each step during which the
full table search was performed. In the worst case scenario
it took a total of 60 milliseconds to find 4 matching flows

Flow matching performance

Search time (seconds)

Fig. 4: Flow matching performance using a network of 4
ZodiacFX switches

Flow matching performance

e
o
©

)

o
o
N

&4 4 switches
0.06 R
L

e 3 switches

2 switches

wusi 1 switch

Search time (seconds

0 10k 20k 30k 40k 50k 60k
Flows installed on each active switch

Fig. 5: Flow matching performance in the emulated environ-
ment using Open vSwitch and Mininet for up to 60000 active
flows on each switch

(one match per switch) with 60000 flows installed on each
switch. In addition to this, the performance starts to degrade
after approximately 1000 flows in the switch table, which is
why the degradation was not observed when using ZodiacFX
switches that only allow up to 512 entries and are optimized
to support this number of flows.

B. Bandwidth overhead

In the first test, where sFlow’s sampling ratio is set to be
the most accurate and polling frequency is equal to 1 second,
FlowVista significantly outperforms sFlow, as depicted in Fig.
6. The adjustment of sampling rate and polling frequency
for sFlow in test 2 effectively increased the performance of
sFlow and resulted in comparable performance to Flow Vista.

Authorized licensed use limited to: University College Dublin. Downloaded on January 25,2023 at 07:48:28 UTC from IEEE Xplore. Restrictions apply.



Bandwidth utilization

60k — All packets
e FlowVista
S 50k —— sFlow
[
<
g A0k Wk bbb A Al bbbttt bt
g "V'[I"‘ MY L A i ) A Ll | Sl b PAMETHPA
£ 30k
©
©
£ 20k
]
>
O 10k

0
2300 2400 2500 2600 2700 2800 2900

Elapsed time since the start of simulation (seconds)

Fig. 6: Switches containing matched VoIP traffic are queried
for statistics by sFlow and FlowVista. sFlow’s polling rate is
set to 1 second and sampling rate is set to 1:1. The polling
rate for FlowVista is set to 1 second

Bandwidth utilization

. — All packets
35 )
S 20k FlowVista
S — sFlow

CIJ

2

& 15k

5

2

T 10k

GJ

=

g

) SKW\/\//\/\«/\/\A" /\/\—\/\/\\/\/\//\A//\\/\/

0

4060 4070 4080 4090 4100 4110 4120

Elapsed time since the start of simulation (seconds)

Fig. 7: Switches containing matched VoIP traffic are queried
for statistics by sFlow and FlowVista. sFlow’s polling rate is
set to 10 seconds and sampling rate is set to 1:10. The polling
rate for FlowVista remains at 1 second

It means that the overhead associated with running Flow Vista
is almost identical, however sFlow samples every 10" packet,
every 10 seconds. This configuration may be acceptable for
certain types of traffic, for example large data transfers,
however in a highly dynamic environment, such as VoIP, where
MOS needs to be calculated at least every second, using sFlow
would not be feasible. Results for this test are depicted in Fig.
7. Packet sampling rate for sFlow was further reduced to 1:100
and the polling frequency remained at 10 seconds in test 3. The
overhead associated with using sFlow for monitoring purposes
is now lower than in FlowVista, however increasing sampling
frequency is associated with the loss of accuracy. Results for
test 3 are depicted in Fig. 8. For sFlow to be competitive with
FlowVista for accuracy in dynamic environment it requires
multiple times the bandwidth usage. sFlow can be configured
to be competitive with regards to bandwidth, however, a loss
of accuracy will be associated with reduced sampling.

VI. CONCLUSION

Low-bandwidth SDN monitoring techniques were devel-
oped, tested and proven to work in both physical and emu-
lated SDN environments. Network administrators are able to
use FlowVista to identify and filter out application specific

Bandwidth utilization
— All packets
FlowVista
—— sFlow

N - )
o u o
= x =~

O]
~

Overhead (bytes/second)

Al A AN AN A A AN AN RAAR A

4950 5000 5050 5100 5150 5200 5250 5300 5350 5400
Elapsed time since the start of simulation (seconds)

0

Fig. 8: Switches containing matched VoIP traffic are queried
for statistics by sFlow and FlowVista. sFlow’s polling rate is
set to 10 seconds and sampling rate is set to 1:100. The polling
rate for FlowVista remains at 1 second

flows based solely on information provided by the business
application and network protocol of choice. Using native
SDN functions in a novel way can lead to accurate SDN
monitoring on per-flow and per-application basis. Furthermore,
it is possible to classify application flows without having to
use expensive DPI tools or packet sampling. The portability
and extensibility of FlowVista makes it a robust platform for
other network management tools in the SDN space.

VII. FUTURE WORK

Future work will include building path calculation methods
and priority queuing schemes in which the decision is based
upon feedback from the monitoring module.

ACKNOWLEDGMENT

Supported, in part, by Science Foundation Ireland grant
10/CE/I1855 and by Science Foundation Ireland grant
13/RC/2094 and by Enterprise Ireland Grant 1P20140344.

REFERENCES

[1] 1. Corporation. (2003-2017) sflow - network monitoring. [Online].
Available: http://sflow.org

[2] Cisco. (2003-2017) Netflow - network monitoring. [Online]. Available:
http://www.cisco.com

[3] Z. LLC. (2001-2017) Zabbix - the enterprise-class monitoring solution
for everyone. [Online]. Available: http://www.zabbix.com

[4] B. Siniarski, C. Olariu, P. Perry, T. Parsons, and J. Murphy, “Real-
time monitoring of sdn networks using non-invasive cloud-based logging
platforms,” in PIMRC. IEEE, 2016.

[5]1 B. Siniarski, C. Olariu, P. Perry, and J. Murphy, “Openflow based voip
qoe monitoring in enterprise sdn,” in /M. IEEE, 2017.

[6] L. Pol¢ak, L. Caldarola, A. Choukir, D. Cuda, M. Dondero, D. Ficara,
B. Frankovd, M. Holkovi¢, R. Muccifora, and A. Trifilo, “High level
policies in sdn,” in ICETE. Springer, 2015, pp. 39-57.

[7]1 M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “Sdn-
based application-aware networking on the example of youtube video
streaming,” in EWSDN. 1EEE, 2013, pp. 87-92.

[8] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in NOMS.
IEEE, 2014.

[9] C. Thorpe, C. Olariu, and A. Hava, “imos: Enabling voip qos monitoring
at intermediate nodes in an openflow sdn,” in SDS. IEEE, 2016.

[10] L Digium. (2003-2017) Asterisk. [Online]. Available:
http://www.asterisk.org

L. Foundation. (2017) Opendaylight - open source sdn platform.
[Online]. Available: https://www.opendaylight.org

OpenSource. Mininet. [Online]. Available: http://www.mininet.org

(11]

[12]

Authorized licensed use limited to: University College Dublin. Downloaded on January 25,2023 at 07:48:28 UTC from IEEE Xplore. Restrictions apply.



