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Abstract—Due to the spread of Coronavirus disease 2019
(COVID-19), the world has encountered an ongoing pandemic
to date. It is a highly contagious disease. In addition to the
vaccination, social distancing and isolation of patients are proven
to be one of the commonly used strategies to reduce the spread of
disease. For efficient social distancing, contact tracing is a critical
requirement in the incubation period of 14-days of the disease to
contain any further spread. However, we identify that there is a
lack of reliable and practical social interaction tracking methods
and prediction methods for the probability of getting the disease.
This paper focuses on user tracking and predicting the infection
probability based on these social interactions. We first developed
an energy-efficient BLE (Bluetooth Low Energy) based social
interaction tracking system to achieve this. Then, based on the
collected data, we propose an algorithm to predict the possibility
of getting the COVID-19. Finally, to show the practicality of our
solution, we implemented a prototype with a mobile app and
a web monitoring tool for healthcare authorities. In addition
to that, to analyze the proposed algorithm’s behaviour, we
performed a simulation of the system using a graph-based model.

Index Terms—Internet of Things, Bluetooth Low Energy,
COVID-19, SARS-CoV-2, Contact Tracing Algorithm, Infection
Prediction, Energy Efficiency, Social Interaction Tracing

I. INTRODUCTION

ANew emergence of an epidemic was identified in late
December 2019. This is known to be first detected in

Wuhan city, China. The virus causing the pandemic is named
Severe Acute causes Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), and the disease caused by this virus was
called COVID-19 by the World Health Organization [1]. This
epidemic has gradually turned into a global pandemic. Many
countries faced great distress in their health systems where
hospitals and medical staff capacity were insufficient to treat
the rapid increase of COVID-19 patients. A disease like this
can cause a tremendous life-threatening risk to these patients
since the healthcare systems run out of their capacity to
treat them properly. However, if the authorities can make
early identification of potential COVID-19 patients via contact
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tracking, they can take measures to isolate this high-risk
personnel. It ultimately slows down the disease progression,
and reduces the total number of patients.

Conventionally, authorities tend to use manual contact track-
ing of positive COVID-19 cases. That method is not practical
and inefficient in the long run since it needs the effort of
many personnel, including health workers. It is also time-
consuming and takes about three days per each new case
[2]. Spending three days to identify a new case is useless
when the disease is spreading rapidly. There are many existing
approaches to automate contact tracing. However, there are
some issues we observe in the existing solutions. As the
first step, identification of all social interactions during the
incubation period of up to 14 days is required. The identified
close contacts should undergo social isolation. Verifying social
isolation for these people with solely GPS-based solutions
seems insufficient since GPS has less accuracy and does not
work well indoors. Second, during our study, we noticed that
there is a lack of related works regarding social interaction-
based infection prediction methods due to the difficulty of
tracking and accurately obtaining patients’ past interactions.
Third, healthcare workers pose a high risk of being infected
with the COVID-19 virus since it is unlikely to identify the
COVID-19 carrier without symptoms unless tested. Finally,
there is a lack of proper mechanisms to identify correct groups
of people who need testing for COVID-19. Using random
methods or testing with less information will waste time, and
resources. Besides, some of the patients may not be subjected
to random tests and remain unidentified.

There are several contact tracing systems have been de-
veloped based on the Bluetooth Low Energy (BLE) [3]–[6].
However, none of these developments proposes mechanisms
to provide social interaction-based infection prediction to
compensate the above mentioned issues. Besides that, none of
the current contact tracing systems have proposed an approach
to optimize the mobile app’s energy utilization even though
the mobile applications usually run as background services.
The advantage of our approach of having social interaction-
based prediction is the increased accuracy in identifying the
spread of the disease through social contacts. We show the
accuracy of our predictions with the actual results under
Section VI. Especially when considering the relaxation of
travelling restrictions, there will be more interactions among
people that could cause further spread of the disease.

In this work we propose a BLE-based social interaction
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tracking system to address the aforementioned issues. For
this, we use a mobile app to collect information about the
nearby phones that use BLE. The app receives and records
the proximity of other mobile phones and interaction duration
based on the received signal strength. Then it uploads the
collected information to a cloud storage with the timestamp
and optional GPS location. We formulated a social interaction-
based COVID-19 infection probability prediction algorithm on
the server-side. Moreover, with the server and the developed
mobile application, the system also facilitates real-time contact
tracing if the user has enabled real-time data transmissions
with the server. According to this option provided by design,
a continuous contact tracing process will be carried out. In this
case, both BLE and GPS data will provide real-time contact
tracing for the system administrators. In addition to these
implementations, we have also suggested an energy-saving
approach associated with the mobile application by avoiding
unnecessary power utilization associated with the mobile by
sharing the total power requirement among various mobile
users.

We designed an automatic alert generating mechanism to
identify and notify the user about critical events. An example
of such an event would be identifying high probabilities
of being infected with COVID-19. Additionally a prototype
implementation has been carried out of the solution and
compared the validity of the proposed system with real world
COVID-19 patient data sets.

The remainder of the paper is arranged as follows: Section
II provides background information. The related work is
presented in Section III. In Section IV, the system architecture
and designed algorithms will be presented while in Section
V, system implementation information are discussed. Section
VI presents the experiment results. Finally, the paper will be
concluded with conclusion and future works presented in VII.

II. BACKGROUND

This work’s motivation is the COVID-19 outbreak in Wuhan
city, China, and the epidemic situation occurred worldwide
within a brief period. In this study, we paid attention to
developing contact tracking systems to track the possible con-
tacts exposed to COVID-19 patients. The system development
implements the BLE as its primary wireless communication
medium to perform the contact tracing functionality.

A. COVID-19

Emerging in late December 2019 from Wuhan, China, the
Coronavirus disease 2019 (COVID-19) has caused a global
pandemic within a few months. It is transmitted through
droplets generated via coughing, sneezing, and speaking [7].
Therefore, it can spread during close contact between an
infected and uninfected person by inhaling or entering the
body via the eyes, mouth, or nose. The incubation period
of COVID-19 is between 1-14 days. The median incubation
period was estimated to be 5.1 days in [8] and 97.5% of those
who develop symptoms will do so within 11.5 days of infec-
tion [8]. However, during this incubation period, one could
spread the disease without showing any symptoms. Therefore,

fourteen days of active monitoring period is recommended to
control the disease spread. It is a big challenge to prevent
the disease while reporting new cases related to potential
infectious sources, recognizing close contacts, and isolating
them.

B. BLE

BLE is a low-energy version of Bluetooth specified in
version 4.0. It recognizes as a modern Bluetooth technology
developed by the Bluetooth Special Interest Group (SIG).
Moreover, it is intended to support short-range communica-
tions [9]. BLE is a single-hop solution applicable to various
use cases such as healthcare, consumer electronics, and smart
energy and security. As mentioned before, several improve-
ments of Bluetooth have been offered with BLE, and the raw
data rate in BLE is 1Mb/s, and it had coverage up to a few tens
of meters [10]. In BLE, the Received Signal Strength Indicator
(RSSI) of the signal at the receiving end can approximate the
distance between two devices. RSSI depends on distance and
broadcasting power. To get an estimation of the distance, a
simplified form of the relation between distance and RSSI is
widely used [11].

III. RELATED WORK

Along With the emergence of SARS-COV-2(New Corona
Virus / Covid-19) as a global pandemic, leading technology
businesses and governments began developing contact tracing
systems to discover suspected COVID-19 patient connections
while protecting their privacy and data. In this scenario, they
adhered to a number of principles in order to fulfill their
objectives in relation to these advances.

Among them, Google and Apple have collaborated on a
system with a contact tracing tool that works on both Google
Android and Apple iOS operating systems in modern portable
devices (smartphones). With this development, each mobile
phone pings the other continuously via Bluetooth. In this
situation, if two mobile phones are within range of each
other and can receive Bluetooth transmissions, both will record
the contacted mobile’s ID [3]. Users must manually transfer
the contact tracing records to the server, according to the
developers’ guidelines. This method will not work if COVID-
19 patients refuse to report it to the appropriate authorities.

The Massachusetts Institute of Technology (MIT) has a
similar development with many other researchers’ collabora-
tion. This system basically relies on Bluetooth signals which
consist of random numbers (which sends as strings), likened
to “chirps”, and those other nearby smartphones can hear
and remember these “chirps.” In this case, the whole process
is supported by an application installed within smartphones.
This application can remember what was broadcast via the
smartphone and what was received from the neighbouring
handsets. Users will manually input the list of chirps into the
server if they test positive for COVID-19, and alerts will be
sent to the contacts who are at risk of infection [4]. This is
similar to the technique described in [3].

Moreover, Singapore SGUnited, GovTech, Singapore, and
the Ministry of Health implemented another system, namely
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Fig. 1: Proposed System Architecture

“TraceTogether” for contact tracing of COVID-19 patients.
Similar to the above applications, this also uses Bluetooth
by following similar principles as mentioned in [3] and [4].
In this case, users of the system will also have to install a
specific application on their smartphones. Once an individual
has been tested positive for virus infection, certain users can
choose to allow health authorities to access the data in the app
to help identify possible contacts with higher risks [5]. Besides
that, the government of Australia introduces a similar type of
application, namely “COVIDSafe”. In this case, the system
is also based on Bluetooth. It provides the user with func-
tionalities to perform manual uploads to the server containing
possible high-risk contacts (if the user becomes positive for
COVID-19). Even though this development doesn’t discuss
periodic changing of a user ID (to avoid unnecessary tracking
of devices), it proposes a mechanism to store user data in an
encrypted format to improve system security [6].

As stated in the preceding paragraphs, almost none of the
developments described above have done real-time contact
tracing and server-side algorithm implementation to improve
accuracy of the whole system. Most of them support manual
uploads of the traces into specific servers. Having real-time
contact tracing is crucial in a highly contagious disease like
COVID-19 since it has a higher infection and lower detection
rates as shown in [12]. We include our methods of implement-
ing server-side algorithms and make them scalable on-demand
since an outbreak could appear randomly anytime. Then
the servers should perform the required computations with
increasing demand without an issue during such a critical time.
Moreover, the servers’ continuous participation/monitoring of
the system and GPS tracking-related concepts are not dis-
cussed within the above implementations. Also, We noticed

that, even though the GPS-based tracking systems can lead to
some privacy leakages of users. It is possible to avoid such
situations by getting the users’ consent and collaboration. In
addition to that, data accumulated with GPS will be beneficial
for conditions like high-sensitive contact tracing and efficient
isolation. Not only that, the available systems do not indicate
any probability measures to show the infection probability of
exposed parties.

Furthermore, current developments generate some basic
alerts based on general parameters like contact time and
distance between users. But, according to our understanding,
these alerts should be specifically tailored to be more helpful
and gain maximum output. In this situation, the notifications
should be customized for each user, taking into account their
present medical issues as well as any chronic conditions they
may be experiencing. None of the preceding systems, on
the other hand, suggest tier-based detection. The tier-based
approach’s significance is that such a development can detect
many direct and indirect contacts in multiple tiers of the
person’s connections. On the other hand, because the virus
transmits in continuous chains from one patient to the next,
this implementation is critical.

In contrast to the above implementations, the contact track-
ing system named ”Aarogya Setu” developed in India [13])
has provided a competitive solution among the rest with
hybrid BLE and GPS based contact tracing plus some unique
characteristics like risk level predictions using the number of
contacts and self-assessments based on symptoms and other
relevant information like declared diseases, age, and gender
of the user. Even though Arogya Setu seems to be a more
sophisticated implementation, we found some issues associ-
ated with that implementation. This system lacks individual
tracking protection as it has equipped with the randomly
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generated static ID related to each user app. In addition to
that, the system has not discussed continuous interaction with
the server and real-time contact tracing and at the same time
not providing any tier-based probability calculation method.
Besides these, it has not addressed any power optimization
methodologies. We designed a more sophisticated system
based on these highlights and recognized flaws to minimize
the challenges and weaknesses related with current COVID-19
contact tracing technologies.

With the work presented in [14], authors have discussed
decentralized “Privacy-Preserving Proximity Tracing.” They
have carried out the developments to determine who has
been in close physical proximity of an infected person while
not revealing the contacted person’s identity or contact lo-
cation. Moreover, they have utilized many privacy-preserving
measures by ensuring data minimization, preventing data
abuse, and preventing tracking non-infected system users,
and graceful dismantling. Our work has also implemented
similar privacy protection mechanisms in many cases with
some alternations and improvements.

Under the title of “Privacy-Sensitive Protocols And Mecha-
nisms for Mobile Contact Tracing (PACT)”, the authors have
proposed a way to set transparent anonymity and privacy
standards while maintaining and preserving civil liberties [15].
Moreover, this system will permit the adaptation of mobile
contact tracing efforts. Furthermore, this work has introduced a
third-party-free set of protocols and mechanisms to address its
primary objectives. The researchers have also included the fol-
lowing capabilities: mobile-assisted contact tracing interviews,
narrowcast messages, and privacy-sensitive mobile tracing via
computing and communication technology.

It is possible to utilize BLE RSSI values/levels to estimate
the distance between two mobile devices (i.e., users). The
RSSI level is mostly determined by distance and broadcasting
power. A simplified version of the relation between distance
and RSSI is used [11] to get an estimation for distance.
In [16], the authors provide detailed guidelines to estimate
distances using RSSI value within a BLE system. They suggest
a mechanism for calculating distances based on the RSSI level
by altering the detection model. We also inspire this relation
of RSSI and distance that was used in that work.

TABLE I shows a detailed comparison of existing contact
tracing systems vs the proposed approach. According to that,
it is clear that the proposing system provides a better level
of uniqueness and a wider range of additional capabilities for
contact tracing.

IV. PROPOSED ARCHITECTURE AND ALGORITHMS

The Fig. 1 provides an overview of our proposed architec-
ture. As shown in the diagram, there are three parties involved
in the system, i.e., (i) smartphone users, (ii) cloud servers, and
(iii) medical officers and health authorities. Each user installs
a specific app on their smartphone to register with the system
and use the service. During registration, the cloud server
issues a random ID to the mobile phone, which updates over
time to prevent traceability. After completing the registration
process, each smartphone will automatically broadcast BLE

advertisements as a means of indicating its presence. Here, the
BLE advertisement consists of only the random ID assigned
to the mobile device. In addition, registered mobile phones
continuously listen and record the advertisements from the
nearby mobiles. In this case, the mobile app records two
specific parameters: (i) the RSSI value of the received BLE
advertisements and (ii) the duration of its contact with the
mobile. Based on the user preferences and permissions, the
mobile application securely records the mobile relay’s GPS
locations periodically. The app can also create initial risk
level forecasts for each contact based on the above-mentioned
personal data.

The data is then sent to the cloud server through a secure
HTTPS connection, where it is used to do more refined
second-stage predictions and contact tracking. The data trans-
fer is done in real-time or on a periodic basis, depending
on the user’s preference and network availability. The health
authorities can access server data and analyze it for detailed
outputs on user movements and associated contacts if an reg-
istered user is infected with COVID-19. Under this scenario,
we developed algorithms to help with the server function
of extracting the links in a graph. Considering user privacy
concerns, we set a threshold of 21 days period where the data
is stored in the servers. As a result, medical officers can have
a complete contact history dating back up to 21 days. We have
created algorithms to calculate the risk levels linked with each
of the patient’s contacts and predict their infection risk. Finally,
all close contacts receive messages based on their risk level,
and the app instructs them on how to take additional steps to
prevent disease spread, primarily by isolating oneself. Suppose
the graph gives any nature of clustering in a particular region.
In that case, notifications can be sent to the officers, such as
public health inspectors working in regional areas, to prevent
the disease from spreading beyond the cluster immediately.
A map is also provided for the authorities to show recent
locations of patients who have enabled their GPS tracking.

A. Calculation of contact distance using RSSI

The proximity between two mobile users is estimated via
approximation because the distance between two users is a
significant consideration. The RSSI of nearby mobile devices
is the only measurement we have in this scenario. We use a
simplified form of the relation between distance and received
power of the signal [11], [37].

Pr(dBm) = Pr1(dBm)−K · log10(D(m)) (1)

where Pr1 is the received power in dBm at 1 m, K is the loss
parameter, and D is the distance between the receiver and the
transmitter. Here, the value for K is obtained experimentally
for an indoor environment. We take indoor environment by
considering the worst-case scenario since the path loss for
an indoor environment is higher than an outdoor environment
[38]. In this regard, we calculate the maximum possible value
range for K in an indoor environment. The value for K is,
therefore, lesser in an outdoor environment according to the
equation 1. For outdoor environments, if the user allows GPS
in the app, it can be used as a measure in addition to the
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TABLE I: COVID-19 Contact Tracing System Comparison

1 2 3 4 5 6 7 8 9 10 11
Iceland: TRACKING C-19 [17]
Finland: Ketju [18], [19]
India: Aarogya Setu [13]
France: StopCovid [20]
Czech: eRouška [21]
Germany: CoronaApp [22]
Ireland: HSE COVID-19 App [23]
Bahrain: BeAware Bahrain App
Bulgaria: ViruSafe [24]
Israel: HaMagen [25], [26]
Malaysia: MyTrace [27]
North Macedonia: StopKorona [28]
Maxico: CoviRadar [29]
Norway: Smittestopp [30]
Italy: Immuni [31]
Singapore: TraceTogether [32]
UK: NHS COVID-19 App [33]
UAE: TraceCovid [34]
Qatar: Ehteraz [35]
Poland: ProteGO [36]
Our Development

1. Real time data transmission to the server and
continuous contact tracing. 7. Anonymous ID assignment for user.

2. Switchablity between manual and automatic data
transmission modes between smartphone and cloud. 8. Algorithm-based infection probability prediction.

3. Availability of Bluetooth based tracing. 9. Specifically tailored risk level prediction and alert
generation for users (i.e considers age, other illnesses, etc.)

4. Availability of GPS based tracing. 10. Tier based expansion for contact tracing.
5. Bluetooth and GPS based hybrid contact tracing. 11. Power optimization algorithm.

6. Tracking protection with periodically changing
random ID.

BLE based distance approximation. Here, the RSSI values and
distance recordings were taken from 1 meter to 15 meters
of distances in the intervals of 1 meter. We obtained RSSI
readings 30 times in each position within that range. The
values of K lies between the range 18 and 22 when applying
the experimental average values to the above equation 1.

B. Energy Saving Algorithm

Even though BLE-based systems provide higher-level en-
ergy saving than the legacy Bluetooth-based systems, this work
proposes a further power-saving algorithm to cut unnecessary
power consumption within the system operation. We recog-
nized that the measures taken via this power-saving algorithm
would be beneficial under the mobile application’s long-
duration usage. Furthermore, with the suggesting algorithm,
the primary intention is to limit the users’ power utilization
by sharing the total power requirement among different users
evenly for a certain period. However, there is a trade-off
between the system’s accuracy and energy-saving when im-
plementing this kind of algorithm. In addition to the proposing
facts included in the following section, several theoretical
derivations and simulations are contained within Section VI-C

to derive some parameters associated with the algorithm. The
proposed algorithm can be recognized as a protocol based on
two major concepts,

• Cluster-based contact tracing for idle (or restricted move-
ment) users.

• Short duration communication with servers.

As indicated from the 1st point in the list, this algorithm is
primarily developed for idle users (e.g., users who are working
within an office environment, sitting in a bus stop, etc.) and
users who perform a limited motion within a certain location
(e.g., payment queue in a bank, etc.) for a certain period.

With this algorithm, users are divided into clusters. Each of
these clusters consists of a maximum X number of users (X is
a variable and refer to Section VI-C for more information). All
of these mobiles are under the ‘idle’ or ‘restricted movement’
condition. Mobiles can automatically detect this via their
built-in sensors. However, optionally users are provided with
the capability to select the idleness using the smartphone
application to indicate their idle state manually or confirming
the notification that may be pushed after detecting the idle state
via the smartphone sensors. Even though the idleness could
be detected via the sensors, the constrained movement may



6

be manually confirmed by users to enable the energy-saving
approach. After confirmation of the inactivity or constrained
movements, the mobile application can automatically enter the
energy-saving mode by following the special energy-saving
algorithm accordingly.

1) Cluster Operation: Under the clustering process, the
distance between each node within the cluster is limited to
a maximum of 8m since it was recorded as the maximum
distance in which the droplets can travel over the air from one
infected person to another [39]. Moreover, one mobile can only
be a part of a single cluster in this process, and each cluster is
isolated from the others. With this clustering process, a single
idle mobile (e.g., A) can be taken into a clustering agreement
with X − 1 other nearby idle mobiles and form a cluster. The
overall clustering process can be summarized as follows.

• First, as described above, a mobile detects its idle con-
dition via the sensors. It pushes a notification to the user
to confirm the idle state (This can also be performed
automatically according to the user preferences). After
the confirmation, it will advertise its idleness along with
its random ID. (Note: The random ID is the periodically
changing anonymous ID assigned to a particular user).

• If the idle indication is received by another idle device
nearby, these two can get into a cluster agreement. In
this instance, the distance between the two mobile is
calculated using RSSI to ensure the 8m criteria has been
satisfied.

• One mobile will contact the server during the cluster
agreement and download a cluster-ID (valid only for the
session). Up to this point, there are only two participants
in the cluster, and the cluster-ID will be broadcasted as
(cluster ID, user no, X − 2) - Here, the user no is a
random number assigned for each user in the cluster to
identify each mobile within the cluster. X − 2 is the
available number of vacancies within the cluster.

• The notable fact associated with the cluster operation is
only one mobile performs the advertising and scanning
work on behalf of the cluster while other mobiles remain
under ‘freeze’ condition. However, after a certain period,
this job will be transferred to another mobile within
the cluster, and the previously functioned mobile enters
the ‘freeze’ condition accordingly (Fig. 2). In this case,
the only message transmitted by the delegated mobile
is the advertisement (cluster ID, user no, X − 2) while
scanning for the broadcasts gets from the mobiles outside
the cluster.

At this point, three keywords associated with the cluster
operation has to be introduced as follows,

• Phase: The time duration where a single device performs
its advertising plus scanning operation (t minutes; where
t is a variable).

• Session: Duration, where all the mobiles within the
cluster go through a single-phase (t ∗ X minutes - This
can be varied according to the number of participants
within the cluster).

• Delegated Mobile: A mobile currently functioning in both
advertising and scanning modes (i.e., Mobile, which is

currently going through its phase).

Especially at the end of each phase, each mobile within the
cluster performs a broadcast to notify others about his/her
presence within the group.

When 3rd device comes into the proximity of the previously
formed cluster (the new device should be in the idle mode as
well),

• The new mobile will identify there is a vacancy for
the existing cluster by reading its broadcast message.
However, it has to wait until the moment where the next
phase of the cluster initiates.

• At that point, the new device will take the chance to
connect with the cluster. In this case, the distance between
each of the clustered devices and new devices will be
calculated. Afterward, the new device’s joining request
will only be processed if all the calculated distances do
not exceed 8m (can be detected via RSSI). Or else, the
new device has to be connected with another cluster.

• This process will continue until all the vacancies are filled
within the cluster.

Furthermore, at the end of each session, all the mobiles
will send a broadcast message to synchronize the collected
data during the cluster operations (e.g., advertisements re-
ceived from the out-of-cluster mobiles or external clusters).
As a result of these broadcast messages, all the mobiles will
synchronize their databases accordingly. Any missing data of
an outside user or the cluster will get updated in this syn-
chronization phase. Moreover, the distance between each node
of the cluster must calculate at the beginning (the moment
where the mobile device joined with the cluster) and the end
of the session. Then, two values will be averaged to take the
average distance between each node. If someone escapes from
the cluster early, that person’s data will temporarily be stored
in a cache. Then, the data can be synchronized via the server
at a later moment using the cluster-ID. On the other hand,
if device sensors record a significant mobile movement within
the cluster, it will automatically exit from the cluster operation.

2) Case With Multiple Nearby Clusters: As mentioned in
the above section, any number of clusters can operate as
isolated entities in the same environment. These clusters can
be geographically mixed, as indicated in Fig. 3, but they
should logically be separated into distinct clusters accordingly.
Each cluster broadcasts the user’s cluster-ID, the user no, and
the available number of vacancies via the delegated mobile
under the cluster operation. As we consider nearby clusters,
all of them may receive advertisements from other nearby
clusters. These advertisements may not be relevant as the
distance would be too large to cause infection. As described in
Section VI-C, we prefer short-duration phases under the cluster
operation. There is a higher chance of having every mobile in
a cluster perform broadcasting during a short period.

When new mobile comes into a multi-cluster environment
and requests to connect, two conditions have to be considered.
First of all, there should be vacancies in the cluster to be
joined. Secondly, if the new mobile device receives advertise-
ments from multiple delegated mobiles from different clusters.
It should connect with the cluster which sends the message
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Fig. 2: Cluster Operation - Overview

with the highest RSSI value. The first condition should have
to be satisfied in order to go with the second condition
completely. On the other hand, if more than X (maximum
number of mobiles devices which can be clustered in) have
received advertisements from a single delegated mobile, we
come to a situation where one of the new mobile device (which
want to be clustered) initiate to form a new cluster with the
same proximity. As mentioned before, these clusters can be
geographically mixed but logically isolated.

At the end of each phase, both advertising and scanning
modes will enable in every mobile. Therefore, all of them
receive advertisements from nearby clusters. Simultaneously,
advertisements sent from these mobiles will receive by dele-
gated mobiles in the nearby clusters. If any data get lost during
this process, it will recover during the database synchroniza-
tion phase at the end of the session. Furthermore, a mobile in a
particular cluster may receive multiple advertisements from the
mobiles in a nearby cluster. Therefore, TABLE II’s approach
can calculate the distance between each mobile in separate
clusters with the server’s aid (Note: The user numbers are
temporary IDs that will only be valid for a particular session).

As described above, we can perform multi-cluster commu-

TABLE II: Example Distance Calculation Among Mobiles
Under Multiple Cluster Operation

Cluster-ID

User no 1 Average RSSI
from user 1

Average distance
to user 1

User no 2 Average RSSI
from user 2

Average distance
to user 2

User no 3 Average RSSI
from user 3

Average distance
to user 3

User no 4 Average RSSI
from user 4

Average distance
to user 4

User no 5 Average RSSI
from user 5

Average distance
to user 5

nication via the cloud database, which helps to synchronize the
data between the clusters. With this approach, even if there is a
COVID-19 infected person in a nearby cluster (but not within
a certain cluster), the other nearby cluster is informed, and
their databases being updated accordingly. This will support
the tier-based detection scenarios as described in the following
sections.

Note: If the above approach is unsuccessful, the approxima-
tion approach presented in the following section (considering
the worst-case scenario) can be utilized accordingly.
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Fig. 3: Operation With Multiple Clusters

Fig. 4: Message Flow Diagram

3) Distance Calculations from Out-of-Cluster (Dynamic or
non-dynamic) Mobile: As mentioned above, all the clustered
devices are assumed to be nearby devices. Therefore, all of
them may be influenced by a nearby out-of-cluster device, and
their impact can also be valid for other mobile users. Here,
out-of-cluster users can be divided into two major parts such

as,
• Out-of-cluster users who are the members of another

cluster (can expect lesser movement, non-dynamic users).
• Dynamic users who are not a member of any cluster (can

expect dynamic movements for a short period).
However, under the cluster operation, instead of sending

all the IDs individually, one mobile (A in the message flow
diagram, Fig. 4; delegated mobile) will send the session ID
(cluster-ID) to the nearby out-of-cluster devices to save more
energy and processing power. Therefore, when considering
the distance calculation between the clustered mobile (e.g.
C, Fig. 4) and an out-of-cluster mobile (e.g. a, Fig.4 ), a
is receiving only the cluster-ID and the user no. However,
this external mobile can index the server database with this
cluster-ID regarding the information about that particular
cluster (requires an internet connection). With the data
retrieved from the server, the distance between each user will
be calculated according to the worst-case scenario. In this
case, the minimum distance between the external user and
the user within the cluster will be calculated accordingly.

E.g.
External User - a
Broadcasting User - A
Inactive mobile in the cluster - C
Calculated Distance from a to A - 5m
Distance form A to C = 2m
Then the distance from a to C under worst-case = 5-2 = 3m
If the worst-case distance recorded something less than 0m,
the absolute value is taken (e.g. 3-5 = -2m ⇒ 2m)

C. Infection Probability Prediction Algorithm

We offer a method for calculating the likelihood of infection
for a given user. When considering the chance of spreading
an infection from one person to another, we assume that two
key criteria would have the most impact on the algorithm: the
distance between them and the time they were in contact.

We suppose that the likelihood of contracting the virus
varies with distance in an exponential manner by considering
the rapid increase of getting the infection when two people
are getting closer physically. This is shown by the equation 2
as follows:

Pd(x) = e−nx (2)

where n is a positive constant, and x is the distance. For
example, in [39], the probability of getting the infection at
a 4 meters distance is assumed to be 5%, and the value of n
is calculated accordingly.

The probability variation with the contact period is taken
as,

Pt(t) = 1− e−mt (3)

where m is a positive constant, and t is the period of contact.
According to this equation, the chances of getting the infection
increases with more time in interaction. In our simulations,
based on the [40], 95% confidence of getting the infection is
taken as 10800 seconds (3 hours) of the contact period.
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Fig. 5: Example Contact Tracing Process for a Single Se-
quence up to 3 Tiers

The simple scenario for contact tracing in a single sequence
is described in Fig. 5. As illustrated, for two contacted people
a and b where a is in tier r and b, is in the tier r+1, (where
b is an indirect associate of a), their contact distance dab and
time tab are considered as independent from each other. Thus
the two probabilities are multiplied to get the probability of
having b being infected by a. We denote this probability as
Pi(b, a). Also, the total probability of getting the infection Pi

to the person a affects the probability of getting the infection
to b. They can be represented as follows:

Pi(b, a) = Pi(a) · Pd(dab) · Pt(tab) (4)

Apart from distance and time, we took into account a variety
of other aspects, such as the user’s medical issues, to determine
the score, provided the user is ready to disclose these personal
facts. If the contribution of a factor h to the probability is
denoted as Pch , by considering k number of such factors, the
probability Pi(b, a) of person b getting infected by the person
a, can be denoted by the following equation:

Pi(b, a) = min(Pi(a) · Pd(dab) · Pt(tab) +

k∑
h=1

Pch , 1) (5)

The value of k is dependant on the level of refinements that
one would want to achieve. The primary two considerations
in our algorithm are, as mentioned, the distance and the time
measures, which have the highest impact on the overall prob-
ability. When using the algorithm, it is up to the users, such

as governments and organizations, to consider other factors
and perform necessary experiments to identify their impact on
the overall probability. With more parameters considered, the
probability score would increase according to the significance
of the factor. For a use-case, we considered some Risk Factors
(RF) based on several considerations, where they contribute to
the risk of getting the infection. Here, we use the case mortality
rates presented in the [41] to derive the values for the Pch .
Age, comorbidity, and gender are the three most important
factors to consider. People with chronic conditions and those
over the age of 60 are more susceptible to the disease due
to their weakened immune. The higher COVID-19 death rates
in the elderly population support this fact. As a result, we
add this extra weight to the previously computed probabilities
based on distance and contacted duration, in order to create
more tailored results for each user. Moreover, the risk factor
calculation for base case scenarios is available in TABLE III
with an assignment of 0.01. In addition, TABLE III shows
the RFs related to different situations, which are calculated as
relative variations of the base case scenario.

TABLE III: Base-Case Scenarios and Relative Risk Factors
(RF) [41]

Age Group RF Comorbidity Condition RF
0-9 0.010 Healthy (No-Comorbidity) 0.0100
10-19 0.010 Cancer (Any) 0.0622
20-29 0.010 Hypertension 0.0667
30-39 0.010 Chronic Respiratory Disease 0.0700
40-49 0.020 Diabetes 0.0811
50-59 0.065 Cardiovascular Disease 0.1167
60-69 0.180 Gender Consideration RF
70-79 0.400 Female 0.0100
Age =>80 0.740 Male 0.0165

As the person b can have q number of multiple connections
from the previous tier, we get the total probability of being
infected as b, Pi(b), which is the minimum of either the sum
of all probabilities from each connection or 1. This makes the
maximum possible probability equal to 1. If the probability
reaches 1, it implies that the person is infected.

Pi(b) = min(

q∑
j=1

Pi(b, j), 1) (6)

V. IMPLEMENTATION

We develop BLE and location-based prototype mobile ap-
plication to show the practicality of our proposal.

A. Mobile App

We develop a mobile app for Android mobiles using An-
droid Studio 3.4. The mobile app interface is shown in Fig.
6, it is the interface through which users interact with the
system, and it can also be used to track user interactions. It
performs many tasks, including user registrations, broadcasting
BLE advertisements, and sending user data to the server.
The app records the user’s contact information during the
registration phase, such as mobile number, address, and email
details. At the same time, users can supply some health-related
data (e.g., chronic conditions) to receive more accurate and
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Fig. 6: Developed Mobile Application

especially designed notifications, albeit it is not mandatory.
After completing the registration process, the user can log in
to the app and enable the automatic functioning mode. The
app will then operate without any user interaction.

Additionally, users can enable or disable privacy features
like GPS tracking, personal information, health data, etc. Here,
the GPS data gets only recorded when the user allows for this
feature, and even if the user enables permission, it is only
stored locally in the user’s mobile. Then, the infected person
can anonymously contribute to sending the saved locations
to help authorities warn the public about the patient’s recent
locations without revealing the patient’s identity. There are
two modes for BLE in the app: advertising mode and BLE
scanning mode operations. After each scan, the RSSI values
of surrounding mobiles (which convert to distance values),
the user location, and associated timestamps are captured and
saved in the app memory.

Additionally, the app records the overall contact period with
each of the nearby mobiles. Once the internet is available,
or during the user’s allocations, the app transmits data via a
secured web socket to the cloud server. Here, the user can
select one of the three options. The first option is real-time (
users have to enable this to perform real-time (or continuous)
contact tracing mechanisms). The second is to send them
periodically, and the third is to perform manual transmission
according to user preferences.

B. Web Application

The “Java Spring Boot framework” is used to implement
the server side. The back-end is made up of microservices
using Application Programming Interfaces (APIs). When more
user traffic is available, this model helps to scale up the
services. For the front-end, we use the Angular framework
to view mobile users’ data by authorized administrators. This
application consists of a login portal where only authorized
users get access to it. After successful login, the administrator
can input any user’s phone number. They can then check the
position and details of nearby persons for a specific time period

as shown in Fig. 7. They may view the locations of nearby
users’ details for each pin on the map using Google Maps
(Fig. 7c). The administrator can also use a network graph to
visualize these connections over time to gain more insight into
the interactions (Fig. 7a, Fig. 7b). We allow the graph to view
up to 3 tiers of information about direct and indirect contacts
for demonstration.

Authorities can generate alerts via email and SMS message
services after locating the contacts. People at higher risk can
be automatically notified. They can then be self-quarantined,
and get them self tested using a PCR performed in order of
decreasing risk.

C. Security and Privacy

In our work, we considered the security and privacy of the
users since it would be a critical aspect regarding user data.
For Location privacy preservation, we provided the option for
the users to choose if they want to provide their GPS location.
If not, the BLE-enabled location will be utilized. We used a
lightweight yet robust Advanced Encryption Standard (AES)
encryption technique to encrypt data from the user’s mobile
application to establish End-to-End (E2E) confidentiality be-
tween the mobile device and the cloud server. A secured HTTP
connection is made with the users on the server-side to connect
with the system, and all the communicating data is encrypted.

VI. EXPERIMENTS AND RESULTS

A. Analyze the Performance of Infection Prediction

To identify the performance and verify the usability/validity
of the algorithm, some system simulations have been per-
formed accordingly. For comparing the simulations with a
real data set, a COVID-19 patient infection dataset [42] was
selected, and simulations were performed. The starting date
of the selected data set, indicated as 22nd January 2020. The
simulation results are shown in Fig. 9. We selected several
provinces in China, Vietnam, Taiwan, two states of Australia,
and two islands of the United Kingdom, where the disease
has spread. These locations had steady control in relatively
smaller populations, such that disease is assumed to have
been controlled, and all the cases were detected within the
selected period. We selected many regions in different parts
of the world to verify if our model fits the locations’ real
data disregard. The simulations of the proposed model, both
with and without considering personal details, show that our
approach can be utilized to obtain similar results to the real
statistics. Therefore, the selected locations resemble our graph-
based approach with a fixed number of nodes. A graphical
representation of such a graph with 100 nodes is shown in
Fig. 8.

The users are represented with nodes, and the connec-
tions among the users mean with edges in the graph. Each
node within the graph contains the infection probability of a
particular user. We developed two models for each selected
region or country with the exclusion and inclusion of a
user’s personal details. Furthermore, we took pieces including
chronic medical conditions, gender, and age into account. In
this scenario, the gender is chosen at random and distributed
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(a) Contact Information (b) Network Graph (c) Map View

Fig. 7: Web Application

(a) Iteration 1 (b) Iteration 11 (c) Iteration 17

Fig. 8: Graph Model for 100 Nodes at Different Iterations of Infecting Nodes

evenly over the graph. When it comes to age, a triangular
distribution is approximated so that the population’s average
age is considered the maximum in the probability distribution.
Chronic disease conditions are deemed to rise with age, and a
maximum likelihood of two diseases per individual with twice
or more than the average age is specified.

An edge in the graph model contains the average distance
and duration of contact between two nodes over a while. As
a result, the created graph reflects a specific time, along with
the connections.

The graphs are formed with a set number of nodes, and
edges are generated at random. This randomly generated
number of edges is set to have a minimum of one edge
and up to a maximum of n − 1. In this case, n is the total
number of nodes initialized in the graph. In addition, each edge
has values for distance and contact period that are randomly
initialized. The likelihood of a node becoming infected is
initially set to zero. Then, by selecting a node at random,
a new patient is introduced into the produced graph. All other
nodes in the graph update their infection probability using our
proposed algorithm for infection probability. The technique is
then repeated for multiple iterations until all nodes have been
infected.

We simulated the insertion of one new patient randomly in
the graphs for each iteration, as suggested by the method. One
iteration is deemed to be equivalent to one day of real-world
data in this example. The total patient count obtained from
both simulated and real data was then plotted. The number of
iterations in all simulations is smaller than the total number
of nodes in the graph, as seen in Fig. 9. The reason for
this observation is that the probability of infecting healthy
nodes increases with each iteration, and some may become

infected automatically. This observation resembles how the
virus spreads from one patient to a healthy person.

In each of these simulations, the maximum number of
node connections shows the maximum possible edges that a
node can have. We simulated for maximum node connections
ranging from 2 to 5 in each graph in Fig. 9. These graphs
show that when the maximum possible edges are reduced, all
the nodes in the graph are infected within fewer iterations.
With this result, we can conclude that self-isolation and social
distancing-related measures are important to reduce the speed
of disease spread.

For each graph that has considered the personal details, we
selected the best number of maximum node connections based
on the curve having the highest Pearson correlation coefficient
with the real data curve. Because the edges are produced at
random, we performed simulations for each of these curves,
infecting all of the nodes for 50 iterations and calculating
the mean patient counts. The Pearson correlation is measured
for the mean simulated data. The best correlations and their
respective maximum node connection counts are shown in
TABLE IV below.

The following sections provide further observations that we
made from simulations in each country.

1) China: In China, we selected four regions, Hainan,
Shaanxi, Shanghai, and Sichuan provinces, to simulate total
patients count with actual data. Then, we modeled graphs for
each area with the same number of nodes as the total number
of patients detected within a period. This period may differ
as the time taken to control the disease may vary from one
region to another.

2) New Zealand: The data set of New Zealand shows a
rapid increase in the patient count after about five patients
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Without simulated personal details
Hainan (China)

With simulated personal details
Hainan (China)

Without simulated personal details
Shaanxi (China)

With simulated personal details
Shaanxi (China)

Without simulated personal details
Shanghai (China)

With simulated personal details
Shanghai (China)

Without simulated personal details
Sichuan (China)

With simulated personal details
Sichuan (China)

Without simulated personal details
Zhejiang (China)

With simulated personal details
Zhejiang (China)

Without simulated personal details
New Zealand

With simulated personal details
New Zealand

Without simulated personal details
Vietnam

With simulated personal details
Vietnam

Without simulated personal details
Taiwan

With simulated personal details
Taiwan

Without simulated personal details
New South Wales (Australia)

With simulated personal details
New South Wales (Australia)

Without simulated personal details
South Australia (Australia)

With simulated personal details
South Australia (Australia)

Without simulated personal details
Channel Islands (United Kingdom)

With simulated personal details
Channel Islands (United Kingdom)

Without simulated personal details
Isle of Man (United Kingdom)

With simulated personal details
Isle of Man (United Kingdom)

Fig. 9: Total Patients Count with Changing Maximum Graph Node Connections for Different Regions and Countries
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were discovered. The reason for this is that a single case in-
troduced to a new place does not always result in an epidemic.
Still, multiple introductions can result in an epidemic [43].
Therefore, we started the patient count of real data from 5
patients. The comparison without simulated personal details
has provided closer results to the actual data at the maximum
connections of 4 for a node.

3) Vietnam: Fig. 9 also shows the comparison of simulated
data with the recorded patient count in Vietnam. Here, the
patient count was taken, starting from 16 patients, as the time
it took to reach 16 patients is high compared to the rapid
increase in the patient count afterward.

4) Taiwan: The comparison performed in the Taiwan
dataset was initiated at a patient count of 30 as in the initial
stages, the disease’s progression was slower.

5) Australia: Two states in Australia, New South Wales,
and South Australia, are selected to compare the disease
spread. In New South Wales, the maximum node connections
are between 3 and 4 without personal details. When added
personal data, the simulations shift, such that the actual data is
in between 2 and 3 connections. South Australia has about four
node links without considering the personal details, and with
the details, the node connections get closer to 3 connections.
This change may occur due to increased overall probability
with personal data and approaching the infection state faster.
It would cause a shift in the curves to reach the whole infected
state with lesser iterations.

6) United Kingdom: Data from two islands of the United
Kingdom, the Channel Islands and the Isle of Man, were
selected to compare with the simulations. In both cases, we
can observe a relatively high shift in the curves with personal
details.

TABLE IV: Results Summary for Graph Simulations for
Different Countries

Region/Country
Selected Maximum

Node
Connections

Pearson
Correlation
Coefficient

Selected Maximum
Node Connections with

Personal Details

Pearson Correlation
Coefficient with
Personal Details

Hainan (China) 3 0.991 2 0.983
Shaanxi (China) 4 0.994 3 0.987

Shanghai (China) 4 0.998 3 0.993
Sichuan (China) 4 0.991 3 0.978
Zhejiang (China) 5 0.982 4 0.983

New Zealand 4 0.997 3 0.963
Vietnam 3 0.997 2 0.993
Taiwan 3 0.942 2 0.987

New South Wales
(Australia) 3 0.984 3 0.900

South Australia
(Australia) 4 0.998 3 0.983

Channel Islands
(United Kingdom) 3 0.986 2 0.992

Isle of Man
(United Kingdom) 3 0.998 2 0.987

From the TABLE IV, it can be observed that all graphs have
a high correlation value of more than 0.9 for the best-selected
maximum node connections. Out of them, 4 locations have
a higher correlation with the actual data when considering
personal details than those that don’t consider the personal
details. But in other cases, higher correlations can be observed
in the graphs that did not consider the personal information. As
mentioned, this may occur because the nodes increase proba-
bility due to adding personal details to the overall probability.
It would then result in infecting the nodes in the graph at
a faster rate. The application of personal information may
depend on the region’s spread, where the infection is spreading

faster. If the infection spread is slower, confidential personal
details may not be required from the public. Social distancing
also needs to be considered as the maximum connections
that a node can have may change when switching between
them. Thus, it would be essential to consider both cases and
select the more accurate outcome based on the region, social
distancing, and the spread.

B. Threshold Probabilities for PCR Testing and Self-Isolation

We simulated graphs with 250, 500, 750, and 1000 nodes to
find a threshold probability for PCR testing and self-isolation
with this model. The number of connections among the two
nodes was varied from 2 to 10 in each of these graphs. The
nodes were made infected, selecting one random node at each
iteration until all nodes get infected. Mostly, the nodes get
infected due to nearby ones and increasing their probability,
as suggested in our algorithm. If a node receives the infection
at nth iteration, we recorded the probability of the node at
(n − 1)th iteration. The mean probability and one standard
deviation were plotted for each of those graphs, as shown in
Fig. 10.

The graphs show that the lower the number of connections,
the lower the probability of being infected. This probability
increases with the maximum number of links that a node is al-
lowed. When considering lesser mutual connections, the nodes
often get the infection randomly, and thus their probability
before contracting the disease is lower. Also, the impact of
getting infection to a nearby node is high and more down in
distant nodes; this resembles a real-world situation. Therefore,
when social distancing is imposed, the threshold probability
of issuing a warning could suggest as 0.3 - 0.4, as indicated
by the mean of the graphs. Afterward, PCR testing and self-
isolation measures can be done with the upper bound of
standard deviation at a probability of 0.6 - 0.7.

In the case of lesser social distancing restrictions, the
chances are to have more interactions among people. Thus,
there would be more additions to the probability of getting
infections with indirect contacts. Therefore, as suggested by
the simulations, the threshold probability is higher. This would
be important as generating false alarms at lower thresholds
can reduce the system’s effectiveness, and users may lose
trust. From the simulations, it is suggested to have a threshold
warning probability of 0.4 - 0.5. The self-isolation and PCR
testing can be done when the possibility reaches the upper
confidence level of standard deviation, which can be in the
range of 0.7 - 0.8.

C. Performance of the Mobile app

In addition to the previously mentioned developments,
power utilization of the mobile application has to be taken into
account. Since the developed mobile application is running as
a background service in the smartphone, high power efficiency
is essential. However, most of the similar research done under
the title of “Contact Tracing” associated with the COVID-19
pandemic has not addressed the power optimization measures
related to the system. They have solely relied on the inherent
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(a) For a Graph of 250 Nodes (b) For a Graph of 500 Nodes

(c) For a Graph of 750 Nodes (d) For a Graph of 1000 Nodes

Fig. 10: Probability Prior to Getting the Infection to a Node in Graphs of 250, 500, 750 and 1000 Nodes

power-saving characteristics of the BLE. However, our energy-
saving algorithm is expected to achieve an energy-saving up to
90% theoretically with the proposing total energy requirement
sharing strategy (Under idle or restricted movement of the
users).

For this experiment, we make the use of two android
smartphones, and the obtained results are indicated in TABLE
V.

TABLE V: Mobile App Power Utilization

Mobile
Battery

Capacity
(mAh)

Total
Memory
(RAM)

App
Run Time

Energy
Consumption

(mAh)

Energy
Consumption

as Battery
Percentage(%)

Memory
(RAM)
Usage
(MB)

Samsung
A20 4000 3GB 1 hour 8 0.2 33

Samsung
M20 5000 4GB 1 hour 10 0.2 36

According to the observations indicated above, it is obvious
that the mobile application would run with considerably lesser
power consumption even though it runs as a background
service all day. In this case, the estimated power consumption
for a 24 hour period is 192 - 240 mAh. It is only about 4.8%
power consumption compared with the total battery capacity
of modern-day smartphones (4000mAh/5000 mAh of battery).

In addition to the above observations, with the use of the
data present in TABLE V, we have derived the following
results that clarify the features indicated in the proposed
protocol in the section above. Fig. 11 indicates the impact
of cluster size on the app’s overall power consumption. In

this case, the phase duration is kept for a 1-minute duration
while changing the cluster size from 2 to 20. Furthermore,
the simulation has extended to different session duration as 1
hour, 2 hours and 3 hours as indicated on Fig. 11a, 11b and
11c respectively.

According to the results presented in Fig. 11 it is evident
that with the increase of cluster size, the overall power con-
sumption also becomes lower. However, the abrupt decrease
of power utilization neutralizes in each case approximately
within the range of 9-12 cluster size, and it becomes almost
constant at the end. Therefore, it is better to select the cluster
size within this range to optimize power consumption.

With the results obtained in the above case, the impact
of the phase duration (or session duration) on the power
consumption can be derived as indicated in TABLE VI. In
this case, the cluster size has been fixed to 10 as it can be
approximated as an elbow point in distributions presented
in Fig. 11. With that fixed cluster size, the power usage
under five different phase durations (when phase duration
is changing, the session duration varies automatically) was
derived by neglecting the power usage associated with the
synchronization sessions (As these sessions occur in a short
period in long intervals, its impact is assumed to be negligible).
According to the results obtained from that, it is evident that
there is no significant impact from the phase duration for the
overall power consumption. However, we have identified a
higher chance of escaping some users from the cluster with
longer sessions. Therefore, it is recommended to keep the
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(a) For 1hour Session (b) For 2hours Session (c) For 3hours Session

Fig. 11: Impact of Cluster Size for the Application’s Power Consumption

phase duration as small as possible (e.g., 1m phase duration,
i.e., 10 minutes sessions).

TABLE VI: Power Saving with Clustering Approach Under
Different Phase (or Session) Duration - For Samsung Galaxy
A20

Phase Duaration (minutes) 1 2 3 4 5
Session Duration (minutes) 10 20 30 40 50
Individual Power Contribution
for the Session (mAh) 0.1333 0.2667 0.4000 0.5332 0.6665

Power Consumption without
Clustering (mAh) for 10 mobiles 1.333 2.667 4.0000 5.332 6.665

Power Saving Per Session (mAh) 1.1997 2.4003 3.6000 4.7988 5.9985
Power Saving Per Hour (mAh) 7.2

According to the results obtained in TABLE V, under the
regular operation, Samsung Galaxy A20 will use 8mAh power
per hour, but with the above approach, it will theoretically be
limited to 0.8mAh with 7.2mAh (90%) of total saving.

D. Financial Benefits of Our Solution

With the developed contact tracing system, there are many
inherent financial benefits included. For example, a country
will continue its economic activities with reduced interruptions
due to the COVID-19 pandemic. On the other hand, these
automatic contact tracing methodologies save much money,
time, and human effort. Especially, as indicated in Fig. 12,
governments and medical authorities can identify the required
number of PCR tests to be performed by predicting the number
of individuals who exceed the predefined threshold limits using
the developed model.

As indicated in Fig. 12, we have performed a simulation
with 250, 500, 750, and 1000 nodes respectively with a fixed
number of connections (6) for each node to identify the
behaviors in the population under different periods (10, 20, and
30 days). In addition to that, we considered three probabilities,
0.6, 0.7, and 0.8, to measure the count of these thresholds
exceeding users.

Similarly, a medical authority may set a threshold value
(variable) for the general public’s infection probability by
considering the current COVID-19 spread of the country.
Moreover, it has to identify the targeted population to be
subjected to immediate PCR testing or self-isolation. With
these details, our developed system would be capable of
identifying the individuals who have exceeded the intended
infection probability threshold (as individual contact details
are recorded in the system for up to 21 days). With this

approach, a government can quickly identify the required
number of PCR tests for a specific population and avoid
unnecessary costs by performing tests for the whole population
arbitrarily and inefficiently. As it is evident from Fig. 12, the
expected reduction of required PCR tests (or self-isolation
requirements) from the developed algorithms is almost 15%
- 25%. Under each case (Without the algorithm, the whole
selected population (250, 500, 750, or 1000) may get subjected
to PCR test or self-isolation). Furthermore, they can also
identify the testing priorities and perform the PCR tests in a
more organized manner throughout the population, improving
the efficiency of the whole process. It would also save much
time. In addition to that, the medical officers can also grant
self-isolation recommendations for individuals according to
the requirements.

E. Impact of Energy Saving on Accuracy

As mentioned in Section IV-B, we identified an effect on the
system’s accuracy with energy-saving. Therefore, we consid-
ered a way to analyze this trade-off by detecting the situation
where the maximum error could occur with this proposed
algorithm. In this case, there are three points highlighted again.
First, as indicated from the TABLE VI, we have detected
no significant impact on the energy-saving from the phase
duration. Second, as mentioned in Section IV-B, after each
phase, a session enables both advertising and scanning mode
in each mobile in the cluster. Therefore, for an external user to
move without being detected by a clustered mobile (which is
idle and inactive at the moment), the contact duration should
be less than the period of one phase. Here, if we refer to
Fig. 13, it is clear that the infection probability increases
in a logarithmic-like behavior when increasing the contact
period. Therefore, keeping the undetected period minimum
between the inactive mobile in the cluster and the out-of-
cluster (dynamic) user is better to minimize the probability
calculation error. Therefore, we suggest 1 minute for the phase
duration due to its very low infection probability within such
a short period. According to the organization’s requirements,
this value can be set up as there is no impact on the cluster’s
overall energy consumption.

To evaluate this further, we can consider the situation where
the maximum error could occur with the developed algorithm.
In this case, we can recognize two significant factors. Those
factors are the contact period and contact distance. Moreover,
under each case, we can consider the situations associated
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(a) 250 Nodes with 6 Connections (max) (b) 500 Nodes with 6 Connections (max)

(c) 750 Nodes with 6 Connections (max) (d) 1000 Nodes with 6 Connections (max)

Fig. 12: Threshold Exceeding Counts Under 250, 500, 750 and 1000 Nodes with 6 Maximum Possible Connections for Each

Fig. 13: Change in Probability of Getting Infection with Time
of Exposure

with clustered users and out-of-cluster users. The delegated
mobile is always looking for incoming advertisements, and
there is a minimum chance to miscount any clustered or out-of-
cluster mobile contact period. However, there can be an issue
associated with the distance calculation between the clustered
and out-of-cluster mobiles.

Therefore, according to the worst-case calculation presented
with Section IV-B, it is clear that the distance between two
users could be calculated as 1 meter when the space is more
significant than that. However, the worst distance would be 1
meter as the infection probability gets lower with increasing
distance. With this sense, in the following example (which is
related to the previous model in Section IV-B), we present the
maximum error that could occur with the existing system.
E.g.
External User - a

Broadcasting User - A
Inactive mobile in the cluster - C
Calculated distance from a to A = 8m
Distance from A to C = 8m
Therefore, the minimum distance between a to C = 0m

However, this distance can also be 16m. If the distance is
0m and the contact period is 1min,

from Equation 2,
Pd(0m) = 1 (7)

from Equation 3,

Pt(1min) = 0.016 (8)

If we consider infection probability of a as 1, then the
infection probability of COVID-19 to C from a, can be
calculated from Equation 4. It is calculated without the fixed
risk factors.

Pi(C, a) = 0.016 (9)

On the other hand, if the actual distance between the users
is 16m,

from Equation 2,

Pd(16m) = 6.25× 10−6 (10)

Therefore, the total probability of C getting the virus
infection from a can be calculated again from Equation 4 as,

Pi(C, a) = 1× 10−7 (11)

Hence, the worst-case probability loss is 0.016 which is a
low contribution. If a stays near the cluster for more than
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1min, the exact distance can be calculated, and the error is
removed. In this sense, we can conclude that the system error
occurring via the presented algorithm is very low, even with
the worst-case scenario.

VII. CONCLUSION AND FUTURE WORKS

With this work, we present a contact tracing system that is
equipped with BLE and GPS capabilities to address signifi-
cant drawbacks and concerns highlighted in current COVID-
19 patient contact tracing systems. Additionally, this system
supports offline and online operating modes, giving relevant
authorities and users a high level of flexibility. Besides that,
with the aid of a developed algorithm, we could also eval-
uate and produce infection probabilities for users. Also, we
simulated the algorithms with a graph-based approach and
compared the findings with actual data from different regions.
The algorithms enable generating required alerts to indicate
the critical incidences (i.e., close contact with a COVID-19
patient) and push the necessary notifications to users about
their associated risk levels in a more tailored fashion than other
systems. We also identified that the proposing clustering-based
system would provide up to 90% of energy-saving for idle
users while providing a 15% - 25% reduction in the required
number of Polymerase Chain Reaction(PCR) tests (or self-
isolation cases). In that sense, our work offers a higher number
of options and accuracy over many other solutions currently
being implemented worldwide. Furthermore, the simulation
findings assisted in gaining insight into how the system will
perform in real-world and practical situations.

We intend to increase the system’s user privacy while
collecting data in the future by incorporating strong anonymity
and unlinkability properties. Furthermore, we want to improve
prediction accuracy by combining machine learning-based
infection probability predictions with the established approach.
Moreover, this system should be helpful and effectively per-
form in any other pandemic similar to COVID-19, which can
spring out any time or anywhere in the future.
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