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Abstract—Network Slicing (NS) is a predominant technology in
future telecommunication networks, including Fifth Generation
(5G), which supports the realization of heterogeneous appli-
cations and services. It allows the allocation of a dedicated
logical network slice of the physical network to each application.
Security is one of the paramount challenges in an NS ecosystem.
Several technologies, including Machine Learning (ML), have
been proposed to mitigate security challenges in 5G networks.
However, the use of ML for NS security is not properly
implemented. Especially, the scarcity of coordination and the
difficulties of privacy-protected information sharing between
slices cause failures and performance degradation of these ML
based NS security solutions. To address this issue, this paper
proposes a novel Federated Learning (FL) based coordinated
security orchestration architecture named Federated Learning
enabled Security Orchestrator (FLeSO) to centrally perform
security operations in a slicing ecosystem while preserving the
privacy of the data. In addition, the proposed FLeSO architecture
enables features such as proactive security deployment and
steady security level maintenance independent of the slicing
strategy. The proposed architecture is implemented in a real-
world slicing testbed, and a comprehensive set of experiments are
performed to evaluate the effectiveness of the proposed FLeSO
architecture. The test results illustrate the significant advantage
of the proposed approach over the legacy system in terms of
improving the security of an NS ecosystem.

Index Terms—Network Slicing, Security, Federated Learning,
Deep Learning

I. INTRODUCTION

The revolutionary transformation toward the smart world
necessitates the connectivity between anything from any-
where, anytime. The advancements in applications such as
autonomous vehicles, Augmented Reality (AR), Virtual Re-
ality (VR), and smart cities demand diverse network require-
ments that can not be facilitated through traditional telecom-
munication networks. The future telecommunication networks
are specifically designed to address these challenges. Network
Slicing (NS) is one of the predominant technologies in such
networks to facilitate heterogeneous network requirements of
diverse applications by dividing the physical network into mul-
tiple logical networks, known as network slices [1]. Increasing
the scalability and dynamicity, facilitating the diverse Quality
of Service (QoS) requirements of different applications, and
improving security and privacy, can be identified as some
advantages of NS. However, along with these advantages, NS
introduces a set of novel security challenges [2].

Heterogeneous applications that utilize the network have
diverse security requirements. Allocating a dedicated network
slice supports overcoming this challenge. Also, slice isola-
tion is essential to preserve privacy and reduce the impact
of security vulnerabilities. Therefore, managing the security
operations within the slice itself, known as in-slice security
management, can be proposed as the legacy approach required
to facilitate these diverse security requirements. However, this
creates a novel set of challenges.

Machine Learning (ML) plays a prodigious role in telecom-
munication security. Security systems adopt ML models to
execute the security operations of the network [3]. However,
the network slices are required to be isolated from each
other due to privacy concerns. This makes it challenging to
collect data and train centralized ML models. Also, the slice
owners may not prefer to share the data in their slices as they
may contain sensitive information. These challenges in an NS
Ecosystem (NSE) degrade the performance of ML models that
are used for security purposes. Therefore, a novel centralized
approach is required to support the training process of the
security-related ML models while preserving the privacy of
data and precisely managing security operations in the NSE.
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Fig. 1: The Methodology of Federated learning
Federated Learning (FL) is a novel approach in ML that

alleviates the challenges in data collection. Learning a global
statistical model using the data stored in remote locations can
be defined as FL [4], [5]. The primary concept of FL is shown
in Fig. 1. A centralized server, known as a federated server
which aggregates the received models into one model using
a specific method such as Federated Averaging (FedAvg) and
FedMA [6] and local data collection nodes are the principal
elements in an FL system. In the FL approach, ML models
can be trained without exchanging data. Therefore, the privacy978-1-6654-3540-6/22/$31.00 © 2022 European Union



and confidentiality of the data can be preserved.
NS enabled environment can be considered a fitting ecosys-

tem for FL. Each individual network slice can be considered
as a local node, and a centralized security orchestration frame-
work can be used as the federated server. Therefore, in this
paper, we propose an FL based coordinated security manage-
ment framework for the NSE. Using FL for security in NS is a
novel research area. So, Federated Learning enabled Security
Orchestrator (FLeSO) is the first FL based approach proposed
to improve security in NS. The modular-level architecture of
the proposed FLeSO framework is presented to simplify the
implementation. Increased performance of security-related ML
models, ability to deploy pro-active security mechanisms and
simplified security management are some of the features of our
framework. We perform an extensive set of experiments on a
real NS testbed which is built using open-source tools, to show
the performance of the FLeSO framework. The FLeSO shows
an increased accuracy and the ability to catch unseen attacks
in the network slices. Also, we show that the distribution
of security attacks across the network does not affect the
effectiveness of our solution.

The paper consists of six sections. Section II discusses the
existing literature in FL, NS, and security. A framework for
using FL for security services in NS is proposed in section
III. Section IV investigates the results of the approach and
comparison of different scenarios, and section V discusses the
proposed approach. Finally, the section VI concludes the paper.

II. RELATED WORKS

FL is a novel approach in ML that Google introduced. In [4],
Li et al. provide a comprehensive investigation of FL including
unique properties, challenges, and potential future research
directions related to FL. Due to the privacy-preserving nature
of FL, Nikham et al. identify FL as a relevant technology for
training ML models in wireless environments [7]. They present
several potential applications, and open research problems, of
FL in the context of wireless communications, specifically in
Fifth Generation (5G) networks. In [8], Yang et al. provide
a comprehensive study on the FL applications for Sixth
Generation (6G) networks. The significance of FL for telecom-
munication systems are emphasized in these researches.

FL utilization for NSEs has been discussed in the research
community. In [9], Messaoud et al. propose a novel federated
deep Reinforcement Learning (RL) approach to facilitate QoS
requirements of an NS enabled Industrial Internet of Things
(IIoT) environment via dynamic network management and
resource allocation. An FL approach for training ML models
in an NSE is proposed in [10]. They build a model to predict
service-level Key Performance Indicators (KPIs) of network
slices to prove their approach. However, these approaches are
not specifically considered to improve the security of an NSE.

FL approaches for improving security can be found in the
literature. In [11], Sater et al. present an FL approach using a
stacked Long Short-Time Memory (LSTM) for anomaly detec-
tion in smart buildings. A hybrid ensemble model for Intrusion
Detection System (IDS) in IoT environments is proposed in

[12]. They adapt the proposed model to an FL framework,
showing that their federated approach achieves performance
close to the centralized settings. In [13], Mothukuri et al.
propose a Gated Recurrent Units (GRUs) model that uses
federated training rounds to detect anomalies for IoT security
attacks. They show that their approach outperforms the cen-
tralized approach in terms of maintaining the privacy of user
data and providing an optimal accuracy in attack detection.
Even though these works address the security challenges using
federated approaches, none of them specifically discuss how
FL can be used to improve security in NS. Therefore, this is
the first approach that uses FL to improve security in NS.

III. PROPOSED FLESO FRAMEWORK

We present the proposed FLeSO approach to improve the
security in an NSE. The architecture with required elements
and connections is shown in Fig. 2. The basic functionalities
of the elements in FLeSO are described below.

• Security Orchestrator Client (SOC): Perform security
operations in a slice, send security related information
to the security orchestrator, and FL model receiving,
training, and sending

• Federated Management Component (FMC): ML
model distribution, collection and aggregation

• Slice Security Monitoring Component (SSMC): Col-
lect outputs from SOCs and pass them to relevant entities
in the orchestrator

• Data Evaluation Component (DEC): Analyze received
information, identify potential attacks, and decide initial
action to mitigate identified attacks

• Solution Life-Cycle Management Component
(SLCMC): Manage the life-cycle of the configured
security operations in the network slices

• System Evaluation Component (SEC): Evaluate the
NSE to perform selected security operations

• Security Solution Deployment Component (SSDC):
Communicate with Network Slice Manager (NSM) to
deploy or configure security operations in the NSE

Fig. 3 shows the functional flow diagram of the FLeSO
framework with the involvement of different elements. A SOC
is required to be deployed in each network slice to collect data
from network functions to prepare data for model training.
The FME handles the main model, and it sends the model to
each SOC to train using the collected data of a correspondent
network slice. After training the received models, SOC sends
the model parameters to the FME. The FME aggregates the
received models and updates the central model. The simplest
method to aggregate model parameters is FedAvg, as men-
tioned. It takes the average of model weights. Then, the final
updated models are deployed in SOCs, and incoming data
are evaluated using that model. The SSME collects the model
outputs and passes them to the DEE for the initial evaluation.
If it identifies an attack, it decides the solution and informs
the SSDE to perform it in the slicing environment. Also, the
SLCME continuously monitors the attacked slice and alters the
mitigation strategy via SSDE according to the strength of the
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Fig. 2: The Proposed FLeSO Architecture

attack. Finally, deployed security configurations are removed
at the end of the attack.
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Fig. 3: Interaction of different components to enable the
functionality of the proposed FLeSO architecture

A. Enabled features from the FLeSO framework

1) Increased performance of security-related ML models:
The FLeSO framework allows to employ distributed informa-
tion across NSE to train security-related ML models. When
the available amount of data increases for the training process,

the performance of ML models increases. Therefore, security
can be improved in the NSE.

2) Secure information sharing: Due to the security and
privacy considerations, information sharing between network
slices is unfeasible. However, the FLeSO framework facilitates
sharing the crucial features of slice-specific data without
sharing sensitive information.

3) Pro-active security deployment: The same security at-
tack can be transpired to different network slices at different
times. The FLeSO framework allows extracting attack infor-
mation from network slices which have been already attacked.
Consequently, the updated ML models can be deployed in non-
attacked slices in advance.

4) Centralized security management: The FLeSO frame-
work has a centralized architecture in an NSE. It can collect
security information from network slices and perform security
operations via the NSM. Therefore, any party who needs to
perform security operations in the NSE can utilize the FLeSO
framework without accessing individual network slices.

IV. EVALUATION OF THE FLESO FRAMEWORK

In this section, we present the experiments performed to
prove the effectiveness of the FLeSO framework. We imple-
ment the FleSO framework on top of a real NS testbed, which
is built using open source tools such as Open Source Mano
(OSM) and OpenStack as shown in Fig. 4. Python, PyTorch,
and Scikit-learn are used to implement the FL framework.
The other elements are implemented using Java Springboot.
NSL-KDD intrusion detection dataset [14] is used for the
experiments as it is one of the widely used data sets among
researchers. Data pre-processing techniques such as data clean-
ing, data transformation, and data reduction are applied to the
data set before starting the training process. The data set’s
composition is balanced when the data set is considered in a
high-level manner, i.e. attack and normal. However, the data
set contains attack data related to several attack types. It is
imbalanced if all the attack types are considered.

We consider the high-level and mid-level classification of
attacks in our experiments. Low-level attack classification has
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Fig. 4: Testbed implementation of the FLeSO

not been considered due to the deficiency in the number of
records per attack type. Denial of Service (DoS), User to Root
(U2R), Root to User (R2U), Probe, and Normal are the classes
in the mid-level classification of the data set. We use a deep
neural network as the ML model to perform the experiments.
Table I shows the utilized parameters in the experiments.

Parameter Value

Batch Size 32
Hidden Layers 2
Nodes in each hidden layer 200
Test Size 10%
Learning Rate 0.01
Number of Epochs 20
Optimizer SGD
Criterion Cross Entropy Loss

TABLE I: Experiment Parameters
In our FL implementation, we assume that the SOC in a

particular network slice is correspondent to a local node, and
the FME is correspondent to the FL server. Also, we distribute
data in the NSL-KDD data set across the SOCs (local nodes) in
different fashions. Hence, in the network, the data received for
the SOC by the network slice is considered to be the allocated
data from the data set for that particular SOC. NSE with one
network slice is not considered in the experiments as NS is
not required in this scenario.

A. Performance comparison between legacy and FLeSO

In this experiment, our objective is to investigate the im-
pact of the training data distribution across the NSE on the
accuracy of the FLeSO framework. Here, the training data
set is Independently and Identically distributed (IID) across
the network slices. We compare the FLeSO based approach
and the legacy approach in this experiment. With the FLeSO
framework, a centralized model is trained using all the data in
the NSE. In the legacy approach, as the data cannot be shared
between network slices, models are trained only using the slice
specific data. When the number of network slices increases,
the traffic per slice decreases since the number of users in the
network is the same. The experiment is performed with two

types of data classification, i.e. high-level and mid-level. In
both scenarios, we measure the accuracy of the models that
were trained using the normal data set and modified data set
by applying the Synthetic Minority Oversampling Technique
(SMOTE) [15]. SMOTE is one of the widely used techniques
to remove the imbalanced nature on data. It helps to reduce the
biasness of classifications of ML models towards the majority
class. For each number of network slices, the experiment is
performed numerous times and taken the average to increase
the accuracy of the results.
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Fig. 5: Accuracy comparison without SMOTE transformation

Fig. 5 shows the results for the model, which is trained
using the standard data set. In terms of accuracy, in both
attack classification scenarios, the FLeSO framework shows
a higher accuracy when the number of slices in the network
increases. High-level attack classification always shows a
higher accuracy due to the lower number of classifiers in
the data set. Moreover, when the number of network slices
increases, the accuracy decreases in each scenario. In the
legacy approach, the accuracy is reduced due to the deficit of
the training data in the network slices. The deviation from the
optimal weight values of the ML models due to the FedAvg
aggregation method is the cause of the accuracy reduction of
the FLeSO framework.

The results when we apply SMOTE transformation on the
data set are shown in the Fig. 6. The results are almost identical
to the previous experiment. However, the FLeSO framework
shows an almost constant accuracy value when increasing the
number of network slices in the system in this scenario. Due to
the SMOTE transformation, the ML-model weight values are
much closer to the optimal values, and therefore, the impact
of the FedAvg aggregation mechanism is minimum. It is the
reason for the almost constant accuracy value in the FLeSO
framework. Furthermore, the accuracy values in each scenario
show relatively lower values than the results received through
training with standard data. Removing the biasness of model
classification towards the majority class due to the SMOTE
transformation could be the reason for this accuracy reduction.

B. Proactive security implementation with FLeSO framework

This experiment aims to investigate how proactive security
mechanisms can be implemented using the FLeSO framework,
hence making the network slices capable of identifying unseen
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attacks. We use an NSE with five network slices for this
experiment since the data set has five attack types under the
mid-level attack classification. Non-IID data is used to perform
this experiment. Data analogous to a specific attack type is sent
to each network slice with a portion of normal data. Attack
data distribution across the NSE is shown in table II. However,
the test set consists of all attack types.

Normal DoS U2R R2U Probe
S1 ✓ ✗ ✗ ✗ ✗
S2 ✓ ✓ ✗ ✗ ✗
S3 ✓ ✗ ✓ ✗ ✗
S4 ✓ ✗ ✗ ✓ ✗
S5 ✓ ✗ ✗ ✗ ✓

TABLE II: Data distribution across slices in experiment B
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Fig. 7, shows the received results in this experiment. In
the legacy approach, the models in individual slices can not
detect any attack type other than the attack in the training
data. However, with the FLeSO framework all the attacks can
be identified. This supports the implementation of proactive
security mechanisms in the NSE. However, the limitation in
the FLeSO framework in this experiment is the requirement
of a higher number of federated rounds to achieve this per-
formance. In this experiment, we performed 500 federated
rounds to receive this result. Significant deviations of the
weight values from the optimal values in the hidden layers
due to the FedAvg algorithm and the specific individual attack
distribution across the network are reasons for this observation.

Moreover, the U2R and R2U attack detection is relatively low
due to the fewer amount of training data in the data set related
to those attacks.

C. Performance evaluation when a slice is under multiple
attacks

This experiment aims to analyze the performance of the
FLeSO framework when we alter the number of attack types
in a particular network slice. This experiment is an extension
of the previous experiment. The data set is not limited to one
specific attack type. Instead, an amalgam of attack types is
sent to each network slice. Attack data distribution across the
network can be seen in the table III. The training data is non-
IID, and the training data distribution is different from the
previous experiment.

Normal DoS Probe R2U U2R
S1 ✓ ✗ ✗ ✗ ✗
S2 ✓ ✓ ✗ ✗ ✗
S3 ✓ ✓ ✓ ✗ ✗
S4 ✓ ✓ ✓ ✓ ✗
S5 ✓ ✓ ✓ ✓ ✓

TABLE III: Data distribution across slices in experiment C
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Fig. 8: Attack detection in experiment C

As shown in Fig. 8, even in the legacy approach, when
the number of attacks in the training set is increasing in a
particular slice, the detectable attack types of the ML model
are increasing. However, the FLeSO does not depend on the
number of attack types in the network slice. Also, it outper-
forms all the scenarios than the legacy security models, even
when the slice is provided with the highest attack diversity.

D. Convergence analysis for optimal performance of FLeSO

This experiment aims to analyse the performance of the
FLeSO framework with different training data distributions
and with different number of federated rounds. We consider
IID data, where all the attack data can be found in each
network slice and non-IID data, where specific attack data
can be found in a particular network slice in this experiment.

Fig. 9 depicts the obtained results in this experiment. The
FLeSO framework converges to the highest accuracy rapidly
with IID data. Then, it converges with cumulative attack dis-
tribution and specific attack per slice distribution, respectively.
However, when the number of federated rounds are increasing,
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the FLeSO framework converges to the same level of accuracy
with all the data distributions.

V. DISCUSSION

Table IV shows the feature-wise comparison of the proposed
framework with existing related works. The key-related works
were selected considering the relevance to our approach,
implementation details, and experimental results. The feature
list is extracted from the proven results of the experiment.
From the comparison of the table IV, we can deliberate that
the FLeSO framework outperforms considering an NSE.

Features [9] [11] [12] [13] FLeSO
Security improvement ✗ ✓ ✓ ✓ ✓
Increased performance of security
related ML models

✗ ✓ ✓ ✓ ✓

Secure information sharing ✓ ✓ ✓ ✓ ✓
Pro-active security deployment ✗ ✗ ✗ ✗ ✓
NS-specific implementation ✓ ✗ ✗ ✗ ✓

TABLE IV: Feature comparison with key related works

Apart from the discussed features, some limitations of the
FLeSO framework can be discovered through the performed
experiments. Data distribution across the network has a sig-
nificant impact on the performance of the ML models in
our approach. Even though a higher number of federated
rounds allows for rectifying the performance reduction, it
significantly increases the training time. Another limitation is
the accuracy reduction when the number of network slices
increases. Moreover, inherent security vulnerabilities in FL
approaches, such as communication bottlenecks, poisoning,
and backdoor attacks, can be found in this approach.

VI. CONCLUSION & FUTURE WORKS

In this paper, we propose the FLeSO framework that can
be used to improve security in an NS environment. FLeSO
is a novel FL based coordinated security orchestration ar-
chitecture which can outcome the drawbacks of legacy ML-
based approaches in slice security management. The experi-
ments performed on top of a real NS testbed prove that the
FLeSO achieves very high accuracy even under limited data
availability in network slices while preserving slice isolation.
Moreover, the FLeSO framework allows deploying security
mechanisms pro-actively for unseen security attacks in net-
work slices. The results exhibit that the FLeSO can obtain a
significant accuracy for any data distribution across the net-
work by increasing the federated training rounds. Furthermore,
the discussed feature-wise comparison of the FLeSO frame-
work with existing related works manifests the significance of

our framework in an NSE. Finally, the discussed limitations
of the framework open some future research directions.

The future work focuses on testing the entire framework
with real-time network traffic. Investigating optimal model
aggregation mechanisms for NS would be one of the inter-
esting research directions of this work. Moreover, enhancing
the framework by reducing the federated rounds required for
convergence is another potential future work.
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